

MiningImpact

Environmental Impacts & Risks of Deep-Sea Mining

Jan 2015 – Dec	
~14.5 Mio€	

c 2017 (25 partners / 11 countries) (funding: ~11.2 Mio€, incl. ship time)

Phase 2

Ph

Aug 2018 - Feb 2022(30 partners / 9 countries + ISA)~17 Mio€(funding: ~11 Mio€, incl. ship time)

Coordinator: Matthias Haeckel, GEOMAR

Belgium: UGent, RBINS France: IFREMER Germany: GEOMAR, MPI, SGN, JUB, UBremen, AWI, BGR, UBielefeld, CAUKiel Italy: UNIVPM Norway: DNVGL, NIVA, UNEP GRIDA, UResearch, NTNU, SNF, IRIS, UiB Poland: ULodz, USzczecin Portugal: UAveiro, IMAR, CIIMAR, UAlgarve, IPMA Romania: Geoecomar Sweden: UGothenburg The Netherlands: NIOZ, UUtrecht, TUDelft United Kingdom: USOU, NHM, NOCS, HWU The International Seabed Authority

Vlaamse

overheid

Impacts of polymetallic nodule mining

- Removal of nodules & 10 cm of seafloor
- Generation of sediment plume that will resettle & blanket the seafloor
- Discharge of sediment waste from surface platform / riser pipe

- Loss of habitat
- Loss of species & genetic diversity
- Loss of ecosystem structure & functions
- Change of surface sediment characteristics & processes

- Deep-sea ecosystems associated with polymetallic resources support a highly diverse fauna
- 2. Deep-sea faunal communities show a high variability on small and large spatial scales, but their connectivity over relevant scales for reference zones and for conservation remains unknown
- 3. Temporal variations of faunal abundances remain unknown due to the lack of long-term ecological time series
- 4. Loss of seafloor integrity by removal of nodules and surface seafloor reduces population densities and ecosystem functions (e.g. nutrient remineralization, microbial growth, bioturbation activity)
- 5. Disturbance impacts last for at least many decades (e.g. biogeochemical processes will take >50 years to recover)
- 6. Sediment plumes will likely blanket the seafloor up to several tens of kilometers outside the mined area
- → Minimizing the large-scale impacts will require careful adaptive spatial planning of mining operations and development of low-impact equipment
- → Environmental management plans need to address current uncertainties of the sediment plume dispersal and spatial variability of the abyssal ecosystem that exists also on local scale

Boetius & Haeckel (2018) Science 359

Outreach activities

- European Maritime Day (May 2016)
- Panel discussion UN World Ocean Day (June 2016)
- Side event at the ISA (July 2016)
- Discussion panel at EU Parliament (Nov 2016)
- BMBF Year of the Oceans 2016/17
- Video installations of artist Armin Linke 2017/18
- Stakeholder Events at the NHM London (Oct 2017) + RBINS (Sep 2018)
- TV documentaries: Arte, Leschs Kosmos, ZDF KiKa
- Interviews for radio stations, newspapers, journals, web blogs
- Presentations for general public (e.g. Kiel Week)

- Develop + test monitoring concepts and strategies for deep-sea mining operations
- Develop standardization procedures for monitoring and definitions for indicators of a good environmental status
- Investigate potential mitigation measures, such as spatial management plans of mining operations and means to facilitate ecosystem recovery
- Develop sound methodologies to assess the environmental risks and estimate benefits, costs and risks
- Explore how uncertainties in the knowledge of impacts can be implemented into appropriate regulatory frameworks

WP1	Biodiversity,	connectivity,	resilience
-----	---------------	---------------	------------

- WP2 Fate and toxicity of the sediment plume
- WP3 Biogeochemistry + ecosystem functioning
- WP4 Data and sample management
- WP5 Project dissemination and coordination
- CCT1 Plume monitoring + habitat mapping
- CCT2 Disturbance effects in time and space
- CCT3 ERA & policy recommendations

MiningImpact 2 will conduct

an independent scientific assessment of the collector trial of DEME-GSR Monitoring program is not part of GSR's obligation to monitor their trial. All project data will be published in open-access databases (PANGAEA).

German + Belgian license areas in the CCZ SO268: 17 Feb – 22 May 2019 follow-up cruise: early 2021

20°0.0'N

10°0.0'N

130°0.0'W

- ROV Kiel 6000 (+ 2 elevators) and AUV Abyss
- CTD/water sampler for deployments in the water column and plume sampling
- GC, TV-MUC, BC, in situ pumps to sample sediments and fauna
- 4 benthic landers with ADCPs, OBSs, turbidity sensors, time-lapse cameras, hydrophones
- 6 Moorings + 4 sediment traps
- ROV-operated in situ experimentation (benthic chambers, microprofiler, PC etc)
- Parasound + Multibeam (EM 122 + EM 710) systems and underwater positioning systems

Understand fate of particles and effective footprint in space and time

- \Rightarrow requires multiple-year time-series of bottom currents
- \Rightarrow characterization of particle size distributions, aggregation, settling velocities

 \Rightarrow develop appropriate numerical models

Array of >50 optical/acoustic sensors will be deployed on ~20 different platforms (landers, moorings, tripods) guided by numerical simulations and existing baseline data

Belgian license area (14° 07' N / 125° 53' W)

German license area (11° 56' N / 117° 1' W)

Preliminary Cruise Schedule

Plan A2			
February	March	April	May
1	1 ecotox/foodweb	1	1
2	2	2	2
3	3	3 arrive BE claim	3
4	4	4 put down sensors	4
5	5	5	
6	6 leave GER for BE claim	6 start trial + plume BE	6
7	7 arrive BE claim	7	7
8	8 baseline ref	8	8 pickup sensors
9	9	9 end trial	9 restoration experiment
10	10	10	10
11	11	11 end plume monitor	11
12	12 baseline trial	12 impact assessment BE a	12 leave GER for BE claim
13	13	13	13 arrive BE claim
14	14	14	14 impact assessment BE b
15	15	15	15
16	16	16 pickup sensors	16
17 Manzanillo	17 ecotox/foodweb	17 leave BE for GER claim	17
18	18	18 arrive GER claim	18 leave BE claim
19 arrive GER claim	19	19 put down sensors	19
20 baseline ref	20	20	20
21	21	21	21
22	22 put down sensors	22 start trial + plume GER	22 Manzanillo
23	23 leave BE claim	23	23
24 baseline trial	24	24	24
25	25	25 end trial	25
26	26	26	26
27	27 Manzanillo	27 end plume monitor	27
28	28 harbour	28 impact assessment GER	28
	29 harbour	29	29
	30 Manzanillo	30	30
	31		31

DEME-GSR (GSRNOD19)

14/17 Feb – 1 May (San Diego)