GSR's PROCAT-Project: Technical derisking of deep sea mining equipment

Global Sea Mineral Resources

BGR, Hannover | 29.10.2018

Kris De Bruyne

Dredging, Environmental & Marine Engineering A step-by-step approach towards a prototype mining vehicle

This presentation contains proprietary and/or confidential information. Any disclosure, copying, distribution or use of this information/the ideas incorporated is strictly prohibited. This information is not to be considered as a representation of any kind. Any intellectual and industrial property rights and any copyrights with regard to this presentation, and the information therein, shall remain the sole property of DEME.

CONTENT OF THE PRESENTATION

\$

 $\mathbf{\nabla}$

CONCEPT DESIGN CHOICE | Propulsion- & Collection system

CONCEPT DESIGN CHOICE | Propulsion- & Collection system

- Objective Nodule Collection System: develop a collector head with an appropriate <u>PRODUCTION</u> <u>CAPACITY</u> with <u>MINIMAL ENVIRONMENTAL IMPACT</u>, <u>OPTIMAL PICK-UP EFFICIENCY</u> and <u>MINIMAL DOWNTIME</u>.
- **Step 1: Define Design Drivers:**
 - Production (X ton / year)
 - $\eta_{pick-up} = M_{pick-up}/M_{Total}$ (Maximal)
 - Q_{water} $(= Q_{pick-up} + Q_{separation}) \sim E_{total}$
 - Environmental impact: $\downarrow \sim \qquad \downarrow \sim$ *Turbidity:* $\sum T_{pick-up} + T_{separation} + T_{driving}$ Seabed disturbance
 - Noise

- Seabed interaction
- Reliability
- Lifetime

CONCEPT DESIGN CHOICE | Propulsion- & Collection system

Step 2: Concept trade-off		Hydraulic collectors >		
Design drivers			Mechanical collectors ("Scrapper" systems)	
Pick-up efficiency	$\eta_{pick-up}$? 100%	? (~100%)	
Water flow	$Q_{pick-up}$	↑	≈ 0	
	<i>Q</i> _{separation}	≈0 ~	↑ ₁	End product =
Environmental impact	$T_{pick-up}$	↑ *	↓ ~	Fluidized mixture
	$T_{separation}$	\downarrow	↑ [◆]	
	T _{driving}	=	=	
	Seabed disturbance	Top layer fluidized	Top layer sliced off	
	Noise	Water pumps	Water pumps + drive	
Seafloor interaction	-	\downarrow (No direct interaction)	↑ (Direct interaction)	
Reliability	-	↑	↓ (More moving parts)	
Lifetime		?		S.

CONCEPT DESIGN CHOICE | Strategy

PROCAT#1 | TSTD PATANIA | & COLLECTOR LAB TESTS

ADO NON DESCENDET?

"Until what depth will he not go?"

After the motto of Nicolas Fouquet (Superintendent of Finance of King Louis XIV) "Quo Non Ascendet"

\$

PROCAT#1 | Tracked Soil Testing Device PATANIA |

Objective: Design and build a <u>TRACKED UNDERCARRIAGE</u> suitable to do <u>RESEARCH ON TRACK</u> <u>PERFORMANCE</u> on the sea bed at 4,700 m below sea level.

- General trafficability objectives:
 - Visual observation TSTD performance
 - > Speed , acceleration & slope
- ► Terramechanical objectives:
 - > Pressure Sinkage relationship
 - > Shear stress shear strain relationship (ex-situ)
 - Thrust slip relationship
- Environmental objectives:
 - Turbidity by tracks
 - > Turbidity by horizontal water flow

PROCAT#1 Tracked Soil Testing Device PATANIA I

Slope

- 9 dives and 25 days before 1st success
- Maximum Depth: 4.571m
- Total distance: 14,5km
- 24 sets of Pressure Sinkage tests
- 42 Shear Stress Shear Displacement tests (ex-situ)
- 0 Thrust slip measurements (failure on connectors anchor load cells)

CONCEPT DESIGN CHOICE | Strategy

PROCAT#1 | Nodule Collection Laboratory Tests

- ► **Objective:** develop a collector head with an appropriate <u>PRODUCTION CAPACITY</u> with <u>MINIMAL</u> <u>ENVIRONMENTAL IMPACT</u>, <u>OPTIMAL PICK-UP EFFICIENCY</u> and <u>MINIMAL DOWNTIME</u>.
- Definition:
 Hydraulic Nodule collector
 Nodule Collector Head
 Separation
 Nodule mixture discharge
- ► 2 parallel CFD programs:
 - > Primary jet optimization
 - (no nodules / sediment)
 - > Pick-up process optimization (with nodules / sediment)

PROCAT#1 | Nodule Collection Laboratory Tests

► Laboratory Tests: trade off between <u>REPRESENTATIVENESS</u> and <u>"TEST SETUP"-REALITY</u>

- 70m test flume (33m effective test length)
- Artificial nodules (tumbled lava stones)
 - › Nodule abundance 15 35 kg/m²
 - > 3 different sizes
- Artificial sediment (diluted loam)
 - > Loam vs. Clay vs. Bentonite
 - > Disregarded top "fluffy" layer (\downarrow T_{settling})
 - > No "added" nodule penetration

PROCAT#1 | Nodule Collection Laboratory Tests

- ► Test procedure: "Per geometrical configuration, changing one control parameter at a time"
 - > 9 Geometrical configurations
 - > 4 Control parameters
 - Speed of the carriage v_{carriage}
 - 2 x Jet velocity (v_{PU} and v_{TR})
 - Height above the testbed
- In total 85 test runs (3 months)
- Maximum pick-up efficiency: 99%

PROCAT#1 | Movie

CONCEPT DESIGN CHOICE | Strategy

PROCAT#2 INTEGRATED PRE-PROTYPE VEHICLE

► **Objective 1:** <u>IN-SITU</u> validation and optimization of the technology:

- > Nodule collection system ($\eta\% = f(v, H_{col}, Q_{jet}, \rho_{nod})$)
- > Trafficability (track performance, sinkage etc.)
- > Sensor suite (Multibeam, density meter etc.)
- ► Objective 2: ENVIRONMENTAL IMPACT EXPERIMENTS
 - > Strip mining (mining impact experiment)
 - > H_{col} vs. sediment pick-up
 - > Mitigation systems (mudguards, diffusor etc.)
 - > Input for hydrodynamic model (turbidity sensors)

► Key Figures:

- > Main Dimensions: L10m (+1m + 1m) x W4.7m x H4m
- > Mass: 35T.i.a. (incl. 3T payload nodules) ; 15T.s.
- ²¹ > Total installed power: 400kW (4.2kV)

DEME CREATING LAND FOR THE FUTURE

PROCAT#2 | INTEGRATED PRE-PROTYPE VEHICLE

PROCAT#2 INTEGRATED PRE-PROTYPE VEHICLE

Ś

PROCAT#2 INTEGRATED PRE-PROTYPE VEHICLE

COMPASS | ALGORITHM FOR AN OPTIMAL MINING PATH

L ISTRA MI

\$

COMPASS | ALGORITHM FOR AN OPTIMAL MINING PATH

- COMPASS : Control of an Operational Mining Path through an Auto-adaptive Steering System
 - Algorithm defining most optimal mining path
 - Technological challenges (System dynamics, technical limitations)
 - Environmental challenges (defining CEMS, Scale & Time)

Thank you for your attention

A ANAL

Questions?

Hit.

BY LORME AF ALLALY

States.

