ALTEX-1D

<u>Analytische Lösung der 1D-Transportgleichung mit MS-EXCEL</u>

Microsoft Excel-Arbeitsblatt

Benutzungsanleitung

Ver. 2.4

Anhang 3

Arbeitshilfe "Sickerwasserprognose bei Detailuntersuchungen" Excel-Anwendung "ALTEX-1D"

Inhaltsverzeichnis:

A 3.1	Veranlassung und Zielsetzung	3
A 3.2	Installation der EXCEL-Anwendung	3
A 3.2.1	Excel 2003 unter Windows XP:	4
A 3.2.2	Excel 2007 unter Windows XP:	6
A 3.2.3	Excel 2007 unter WindowsVista:	7
A 3.3	Aufbau der Excel-Anwendung	7
A 3.3.1	Eingabe/Ausgabe	7
A 3.3.2	Ergebnisdarstellung	10
A 3.3.3	Hilfstabellenblätter	11
A 3.4 A 3.4.1 A 3.4.1.2 A 3.4.2 A 3.4.2 A 3.4.2.1 A 3.4.2.2 A 3.4.2.2 A 3.4.3 A 3.4.3.1 A 3.4.3.2	Anwendung des Arbeitsblatts Fallkonstellation A Dateneingabe Fall A Berechnung der Ergebnis-Kenngrößen Fallkonstellation B Dateneingabe Fall B Berechnung der Ergebnis-Kenngrößen Verwendung äquivalenter Parameter Leichtflüchtige Stoffe Mehrschichtige Profile	20 20 22 30 33 34 38 40 40 40
A 3.5	Sensitivitätsbetrachtungen	49
A 3.5.1	Varianten zu Fallbeispiel 1	49
A 3.5.2	Varianten zu Fallbeispiel 2	52
A 3.5.3	Varianten zu Fallbeispiel 3	55
A 3.5.4	Varianten zu Fallbeispiel 4	58
A 3.5.5	Fazit der Variationsrechnungen	60
A 3.6	Validierung	60
A 3.6.1	mehrschichtige Profile	60
A 3.6.2	Berücksichtigung der Flüchtigkeit	61
A 3.6.3	Auswirkung linearisierter kd-Werte	61
A 3.7	Versionsgeschichte ALTEX-1D (Stand Februar 2010)	63

Hinweis: Die Benutzungsanleitung "ALTEX-1D" war ursprünglich als Anhang 3 Bestandteil der Arbeitshilfe "Sickerwasserprognose bei Detailuntersuchungen" (AH-DU). Aus Praktikabilitätsgründen wurde die Benutzungsanleitung in ein eigenständiges Dokument überführt. Die Gliederung, die verwendeten Kapitelhinweise und die Literaturangaben beziehen sich auf die Arbeitshilfe DU.

Überarbeitung durch LBEG / Ref. L 3.2 23.02.2010

A 3.1 Veranlassung und Zielsetzung

Das in der Arbeitshilfe "Sickerwasserprognose bei Detailuntersuchungen" (AH-DU) in Kap. 7.3 beschriebene Verfahren zur quantifizierenden Abschätzung der Sickerwasserkonzentrationen und -frachten für den Ort der Beurteilung beruht auf den analytischen Lösungen der Advektions-Dispersions-Transportgleichung für den eindimensionalen Fall (Kap. 7.3.2, Gl. 16). Mit den Lösungsgleichungen nach *van Genuchten* [4]/Anhang 2 kann unter den in Kap. 7.3.2 beschriebenen vereinfachenden Annahmen und Randbedingungen die Stoffkonzentration $c_s(z, t)$ im Sickerwasser in Abhängigkeit vom Ort (Tiefenkoordinate z) und der Zeit (Zeitkoordinate t) berechnet werden.

Um den Anwendern der Arbeitshilfe die Möglichkeit zu geben, das Verfahren an Hand ausgewählter Fallbeispiele selbständig nachzuvollziehen, wurde auf Veranlassung des ALA (Umlaufbeschluss vom 10.08.2005) ein Berechnungsinstrument auf der Grundlage einer EXCEL-Anwendung erstellt. Das EXCEL-Arbeitsblatt *ALTEX-1D* (<u>A</u>nalytische <u>Lösung der 1D-T</u>ransportgleichung mit MS-<u>EX</u>CEL) soll die in der Arbeitshilfe beschriebenen Zusammenhänge bei der Transportbetrachtung verständlicher und transparenter machen. Es soll dem Anwender außerdem an Hand von Fallbeispielen und beispielhaft durchgeführten Parameter-Variationen ein "Gefühl" für die Auswirkungen unterschiedlicher Eingabeparameter und Randbedingungen auf das Ergebnis vermitteln.

Unter Beachtung der in Kap. 7.3.2 beschriebenen Vereinfachungen kann ALTEX-1D zudem im Vorfeld oder als Ergänzung zu komplexeren numerischen Instrumenten für quantifizierende Abschätzungen sowohl bei Detailuntersuchungen (DU) als auch bei Orientierenden Untersuchungen (OU) herangezogen werden. Die mit dem Arbeitsblatt berechneten Ergebnisse sollten bei sachgerechter Annahme der Eingabeparameter auf der sicheren Seite liegen, d. h. Konzentrationen und Frachten am Ort der Beurteilung werden eher überschätzt. Die EXCEL-Anwendung wurde durch Vergleich mit Ergebnissen aus der Literatur und Berechnungen mit numerischen Modellen validiert (s. Kap. A 3.6).

A 3.2 Installation der EXCEL-Anwendung

Voraussetzung für die Nutzung der EXCEL-Anwendung ist die Datei ALTEX-1D_verXX.xls. Die aktuelle Version ist auf der Internetseite des LBEG (www.lbeg.niedersachsen.de) unter dem Thema Boden & Grundwaser/Arbeitshilfen/ Sickerwasserprognose verfügbar oder kann über einen Link von der Internetseite der LABO (www.labo-deutschland.de) herunter geladen werden. ALTEX-1D wird an den Stand der Erfahrungen aus der Anwendung angepasst. Die jeweiligen Änderungen können in der Versionsgeschichte ebenfalls auf der Internetseite des LBEG nachgelesen werden (s. Kap. A 3.7). Die aktuelle Versions-Nr. von ALTEX-1D ist auf den einzelnen Tabellenblättern angezeigt (s. Kap. A 3.3).

ALTEX-1D wurde bis zur Excel-Ausgabe 2007 (Vista) als lauffähig getestet. Die erforderlichen Voreinstellungen sind abhängig von der jeweiligen Excel-Ausgabe.

A 3.2.1 Excel 2003 unter Windows XP:

Die Datei darf <u>nicht</u> sofort mit Doppelklick geöffnet werden! Zunächst muss EXCEL unter *Windows/Programme* aufgerufen und für die Anwendung vorbereitet werden. Hierzu sind folgende Einstellungen vorzunehmen:

a) Unter Menü-Punkt *Extras/Add-Ins* die Felder *Analyse-Funktionen*, *Analyse-Funktionen-VBA* und *Solver* mit Haken versehen (Abb. 1):

Abb. 1: Auswahl Add-Ins

b) Unter Menü-Punkt Extras/Makro/Sicherheit die Stufe Mittel auswählen (Abb. 1a):

Abb. 1a: Auswahl Sicherheitsstufe

Erst <u>nach</u> diesen vorbereitenden Schritten kann die Datei ALTEX-1D_verXX.xls über den Menü-Punkt *Datei/Öffnen* geöffnet werden. Nach dem Öffnen erscheint das Fenster mit den Schaltflächen für die Aktivierung der Makros (Abb. 1b). Klicken Sie hier auf *Makros aktivieren.*

Microsoft Excel
'D:\Engeser.B\excel\ALTEX-1D_1.xls' enthält Makros.
/
Makros können Viren enthalten. Es ist normalerweise sicherer, Makros zu deaktivieren. Wenn es sich jedoch um zuverlässige Makros handelt, kann die
Makros deaktivieren Makros aktivieren Weitere Informationen

Abb. 1b: Hinweisfenster mit Schaltflächen für Makro-Aktivierung

Es ist darauf zu achten, dass die eingebundenen Funktionen in deutscher Bezeichnung vorliegen. Dies kann in EXCEL 2003 durch Anklicken des Menü-Punktes Einfügen/Funktion geprüft werden. Die Funktionen im eingeblendeten Fenster sollten dann Abbildung 2 entsprechen.

Funktion einfügen	? 🛛
Funktion suchen:	
Beschreiben Sie kurz, was Sie tun möchten und klicken Sie dann auf Start	Start
Kategorie auswählen: Alle	
Eunktion auswählen:	
ABRUNDEN ABS ACHSENABSCHNITT ADRESSE Amordegrk AMORDEGRK AMORDEGRK	
ABRUNDEN(Zahl;Anzahl_Stellen) Rundet die Zahl auf Anzahl_Stellen ab.	
Hilfe für diese Funktion OK	Abbrechen

Abb. 2: Fenster zur Überprüfung der Sprachversion der Funktionen

A 3.2.2 Excel 2007 unter Windows XP:

Die Datei kann direkt durch Doppelklick geöffnet werden. Die weiteren Schritte können der Abbildung 3 entnommen werden. Danach ist das Arbeitsblatt zur Berechnung bereit.

Abb. 3: Voreinstellung für EXCEL 2007 unter Windows XP

A 3.2.3 Excel 2007 unter WindowsVista:

Die Datei kann direkt durch Doppelklick geöffnet werden. Die weiteren Schritte sind aus Abbildung 4 ersichtlich.

G	Start Einfringen Seitzelaugut Engraden Datas Einergrifen Anschl													
	Start Einfüge	n Seitenlayou	it Formeln Dat	en	Überprüfen Ansicht							- ¤ x		
0	Sicherheitswarnung 1	Makros wurden dea	aktiviert. Optionen.		<	Auf "Optio endende	nen" klic "Sicherh	ken. Dai eitswarn	nach ers iung – M	cheint die lakro", Die	e folg- e Schalt-	X		
	F32	(f _x	=WENN(\$D32<1;0;V	/ENI	N(\$D32<2;5;WENN(\$D32<4	fläche Di	jesen Inh	alt aktiv	ioron" ha	etätinen		×		
4	A	В	С		D E	nache "Di		αιιακιν		statigen		-		
13	rote Schrift: berech	nete Werte										I		
15	Bodenart	Trocken-	Grobboden-	Н	Microsoft Office-Sicherheitsr	ntionen		? X	Luftkapazität					
16	bouonait	rohdichte	Anteil	1	microsoft office official	puonen	/		Lanapaznar					
17		ρt	Korngröße>2 mm		🛆 a		/		n. Tab. 70					
18		(kg/dm ³)	(Vol %)		Sicherheitsv	/arnung - Makro			(Vol %)					
19	Ss	1,5	0		Makro				44					
20	SI2	1,5	0		Makros wurden deaktivie	t. Makros könner Viren oder s	onstige Sicherheitsris	iken 🛛	31					
21	1 SI3 1,5 U enthalten. Aktivieren Sie desen Inhaltur, wem Sie der Quele deser Datei vertrauen. 27 2 SI4 1,5 U Waznung: Ec kann nicht factor stallt warden oh dieger Tabalt aus einer													
22	2 SI4 1,5 U Warnung: Es kann nicht festorstellt werden, ob dieser Inhalt aus einer 2b 21 21 21 21 21 21 21 21 21 21 21 21 21													
23	Slu 1,5 0 vertrauenswürdigen Quelle stammt. Sie sollten diesen Inhalt deaktiviert 21 St2 1,5 0 lassen, außer wenn vogeliesem Inhalt wichtige Funktionalität bereitgestellt 35													
25	St2 1,5 0 lassen, auter wenn voordiesem Inhalt wichtige Funktionalität bereitgestellt 33 St3 1,5 0 wird und Sie dessen juliele vertrauen. 28													
26	St3 1,5 0 With a line descendence vertraden. 28 Weitere Information. 34													
27	Su3	1,5	0		Dateipfad: F: kopie vor	Altex_ver27_271108.xls			25					
28	Su4	1,5	0			halt a de Stears (anna faiblea)			22					
29	Ls2	1,5	0			nait schutzen (emptonien)			23					
30	Ls3	1,5	0		Diesen Inhalt aktivie	ren			23					
31	Ls4	1,5	0						26 22					
33	LUZ 1 t3	1,5	0						22					
34	Lts	1,5	0						20					
35	Lu	1,5	0						21					
36	Uu	1,5	0						18					
37	Uls	1,5	0						23					
38	Us	1,5	0		Vertrauensstellungscenter öffr	ien	ОК	Abbrechen	19					
39	Ut2	1,5	0						18					
40	Ut3	1,5	0		10 1	12	49	8	18					
41	Ut4 Tt	1,5	0		10 1	13	54	8	20			U		
42	TI	1,5	0		10 1	13	54	7	17					
44	Tu2	1.5	Ő		10 1	13	55	7	17					
45	Tu3	1,5	0		10 1	14	52	6	20					
46	Tu4	1,5	0		10 1	15	52	6	21					
47	Ts2	1,5	0			14	53	1	18	0.15		×		
Re e	🔹 🖻 📋 Fall A 🗶 Fall B	graphik Z W	ertetabelle 📈 Konz-GV		GWN Feldkap Stoffdate	n 🖉 Kd-Anorganik 🏑 kd	-Organik 🖉 Bio-Ab	obau / Aquival /	/ MKW / Teeről	Prufwerte 4	100 %			
Ber							_	_	_					
	🍯 🖬 🖻 🌽 🔺	Microsoft	Excel nich							DE	() () (<u>) () () () () () () () () () () () () ()</u>	os 08:43		

Abb. 4: Voreinstellung für EXCEL 2007 unter Windows Vista

A 3.3 Aufbau der Excel-Anwendung

Das Excel-Arbeitsblatt enthält 17 Tabellenblätter (Abb. 5 und Abb. 6) in der Reihenfolge:

Fall A, Fall B, Graphik, Wertetabelle, SWR_GWN, Feldkap, Äquival, Stoffdaten, kd-Anorganik, kd-Organik, Bio-Abbau, Konz-GW, MKW, Teeröl, Prüfwerte und GFS.

A 3.3.1 Eingabe/Ausgabe (Registerfarbe gelb)

Die Tabellenblätter *Fall A* (Abb. 5) und *Fall B* (*Abb. 6*) sind die Kernelemente der EXCEL-Anwendung ALTEX-1D (Registerfarbe gelb). Sie enthalten die Felder für die Eingabeparameter, die Ergebnis-Kenngrößen und die Schaltfläche zum Starten der Berechnung über ein Makro. Die aktuelle Versions-Nr. von ALTEX-1D wird im Kopf der Tabellenblätter angezeigt.

Benutzungsanleitung ALTEX-1D

Register/Tabellenblätter

Abb. 5: Aufbau des Tabellenblattes Fall A

Aufgrund des grundsätzlich unterschiedlichen Berechnungsganges für die Fallkonstellationen A (konstante Quellkonzentration) und B (exponentiell abnehmende Quellkonzentration) ist vom Anwender einzelfallspezifisch eine Annahme zu treffen, welche Fallkonstellation maßgebend ist, und dementsprechend das Blatt **Fall A** (Abb. 5) bzw. **Fall B** (Abb. 6) zu verwenden (s. Kap. A 3.4). Das unterschiedliche Emissionsverhalten der Quelle für die beiden Fallkonstellationen wird durch die in die Arbeitsblätter integrierten Prinzipskizzen verdeutlicht (Abb. 5 und 6 oben rechts).

Construction and the prior that there there there is a week of the second of the se	Microsoft Excel - Altex-1D_ver24.x	ls										_ 🗆 🗡
Versions.Nr C A B C A B C A B C B B C B C B C B C B C B C B C B C B C B C B C B C B C B C D C D <td< td=""><td>🕙 Datei Bearbeiten Ansicht Einfi</td><td>ügen Forma<u>t</u> E<u>x</u>tr</td><td>as Date<u>n E</u>ensl</td><td>ter ? Adobe PDF</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Frage hier eingeben</td><td> ×</td></td<>	🕙 Datei Bearbeiten Ansicht Einfi	ügen Forma <u>t</u> E <u>x</u> tr	as Date <u>n E</u> ensl	ter ? Adobe PDF							Frage hier eingeben	×
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 🖌 🛛 🖉 🖓 🖓 🖓 🖓 🖓</td> <td>1, X 🗈 🛍 • <</td> <td>3 -] - (2 - </td> <td>$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$</td> <td>🛯 🛍 🖏 🗧 🗸</td> <td>/ersion</td> <td>s-Nr 📴 🛪</td> <td></td> <td>🔂 💔 Bei</td> <td>arbeitung zurückgenden</td> <td>🚆 📆 🛃 🔤 10 🔹 F</td> <td>≣ € [</td>	0 🖌 🛛 🖉 🖓 🖓 🖓 🖓 🖓	1, X 🗈 🛍 • <	3 -] - (2 -	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	🛯 🛍 🖏 🗧 🗸	/ersion	s-Nr 📴 🛪		🔂 💔 Bei	arbeitung zurückgenden	🚆 📆 🛃 🔤 10 🔹 F	≣ € [
Increased and the second se	D35 🔹 ≉ 6,124					/						
1) (If cycles and service deal of the servi	A	8	С	D	E		F	G H	1	J	K	.
Sector and the index determined in the index of t	1 Transportbetrachtung Fallkor	istellation B	Bearbeiter:	ALA-UA								
The second seco	2 exponentiell abrienmende Qu 3 gelbe Felder: Eingabefelder	elikurizeritration	Projekt: Datum Bearbeit.	Fallbsp. 3/Basuerall Af	1		Konzentrationse	entwicklu	ing Que	elle		
Subscription of the second se	4 rote Schrift: berechnete Werte		Version 2.4									
Towards Investment 1 Note Investment 1 Note Investment 1 Note N	5 Kennwert/Parameter 6 Schadstoff	Symbol	Einheit	Wert Acenaphthen	ber. Wert	- ¢	c _{o1} (t)=c _o +c _b *e	xp ^(-ks*t)				
Second State Sta	7 Prüfwert BBodSchV/GFS	PW/GFS	µg/	0,20			-31(-) -a -b -	· T				
19 Beckerstein beiter Beckerstein beiter Beckers	8 Kontaminierte Flache 9 OdB (u GOK)	OdB	m' m	1100,0		-	c _{s1} (0)= initiale	e Quellko	onzentr	ation=c _a +c _b		
<pre> the second se</pre>	10 Oberkante Quelle	OKq	m	0,5		et	V k	Abklingk	onetanto			
19 februardia de la construcción	12 Bodenart (KA5)	υκα	m	0,7 Su2		- Š	l ns.					
<pre>1</pre>	13 Feldkapazität	FK ob 0	%	23,0		94	<u>с</u> ь.	. Queillern	rikoristar	ile		
17 Generalization No. No. No. No. 19 Generalization No. No. No. No. No. 10 Observation No. No. No. No. No. No. 10 Observation No.	15 Trockenraumdichte Transportstr.	pb-o pb-zs	kg/dm ²	1,30			Ca:	: asymptot	tische E	ndkonzentration		
10 Maintering the set of the s	17 Gesamtgehalt	G	mg/kg TM	85,000				t. Emissio	onsdaue	r '		
a) the decise code bases in the code of the code o	19 Mobilisierbarer Anteil	M _{Soh,F}	Kg %	100,0		- 11 -	PW 🔨	,ų				
al overlage and a set of the set	20 flächenbez, mob. Masse	(0)	g/m²	22,100		_	Ca			\		
22 single tablecontrol of the second	21 Quelikonzentration initial 22 Vorbelastung Transportstrecke	C c1(U) C1	μ <u>η</u> / μη/	750,0		-1 L				<u> </u>	\backslash	
All Manufacturation factor 1	23 asympt. Endkonzentration	C _a	µд∕I	2.0		_ '	20 ²⁰ ¹ Z	eitt(a)	80	100	\mathbf{i}	
Berchnung nach anälytische Ussung Van Genutenting Berchnung van Ge	24 Abklingkonstante 25 Emissionsdauer Quelle	k, t.	1/a	8,484E-83 970.0	8,484E-03	_		()	Γ	D · · ·		
27 Sector Secto	26 Quellstärke initial	J _{c1} (0)	mg/(m ² *a)	187,5						Prinzipsi	KIZZE	
Bit Wettensson Stand	27 Sickerwasserrate	SWR	mm/a m	250,0						Fallkons	tellation B	
30 Schuldterweitet tm a 151/2 C C 30 Schultterweitet tm 6,319 Schultterweitet Schultterweitet 30 Schultterweitet tm tm 5,319 Schultterweitet Schultterweitet 31 Schultterweitet tm tm 5,319 Schultterweitet Schultterweitet 32 Schultterweiter tm tm 5,521 Schultterweiter Schultterweiter 32 Schultterweiter tm a 683,0 Schultterweiter Schultterweiter <td>29 Sickerwassergeschw.</td> <td>Vm</td> <td>m/a</td> <td>1,087</td> <td>Ein Ein</td> <td>igabefe</td> <td>lder (gell</td> <td>b) </td> <td></td> <td>i aintorio</td> <td></td> <td></td>	29 Sickerwassergeschw.	Vm	m/a	1,087	Ein Ein	igabefe	lder (gell	b)		i aintorio		
Sing Byserheite 1 1 1 1 Sing Byserheite 1 1	30 Schadstoffverweilzeit	t _m	a	161,7		<u> </u>	.0	<i>'</i>	L			
33 long longkoeff. 0, m ¹ / ₂ 4,12 8 mk verteiningseeff. k, likg 6,614 8 konzentrations- und Frachtberechnung am OdB 9 max konzentration 1 max konzentrati	32 long. Dispersivität	α,	m	0,380								
No. No. No. No. 101 101 101 101 101 101 10	33 long. Disp.koeff.	D ₂	m²/a	0,413		_						
37 Mission Ta 4.04 38 Mission 10 1/11 41 Berechnung nach analytischer Losung Van Genuchten' Schaltfläche Makro 58 Konzentration Cmax µ9/1 14,5 2 Edipund Formax Konz tanak 144,0 Schaltfläche Makro 58 Zeitpund Formax Konz tanak a 145,0 52 Zeitpund Formax Konz tanak a 683,0 52 Zeitpund FW-Uberschr. tanak big 0 24,019 52 Schadstoffernission GW Edate kg 0,812 52 Schadstoffernission GW Edate kg 0,812 52 Schadstoffernission GW Edate kg 0,812 52 Schadstoffernission GW Edate kg 0,4312 53 Missionstafke GW Jamet mg/1 ⁿ² 3,8 50 Missionstafke GW Jamet mg/1 ⁿ² 1,2 50 Missionstafke GW Jamet mg/1 ⁿ² 1,2 50 Missionstafke GW Jamet Missiofkara	36 Retardationsfaktor	R	ung	46,3								
A Berchnung nach analytösker Lösung Van Genucitent Berchnung and hanalytösker Lösung Van Genucitent Skonzentrations- und Frachtberechnung am OdB Start Berechnung a Start Berechnung and Hall S	37 Halbwertszeit Abbau 29 Abbaukoeff 3	T ₁₂	a 1/2	0,592							-	
International data decided product Location Suit Berechnung Schalt Hach during an OdB Image: Suit Berechnung Image: Schalt State S	41 Berechnung nach analytische	er Lösung "Van G	enuchten"	.,			Scholt	fläch	~ 14	altra		
Solution de la construction de la construct	es Konzentrations, und Erachth	erechnung am O	HR	Start Berechnung			Schait	nach		akiu		
Image: Instruction of the instruction o	97 may Konzentration		ua/l	14.5							1	
2 Zetgunkt 20/000/2010 300/000 2 Zetgunkt PW-Uberschr. 1 per 20 100 Zetgunkt PW-Uberschr. 1 per 20 101 Dauer PW-Uberschr. 1 per 20 102 Schadstoffemission Quelle Erges 103 Schadstoffemission QW E gene 104 max. Fracht GW E gene 105 Schadstoffemission GW E gene 106 max. Fracht GW E gene 107 mttl. Erracht GW E gene 108 mttl. Fracht GW E gene 109 mttl. Erracht GW J gene 109 mttl. Erracht GW J gene 100 mttl. Erracht GW J gene 100 mttl. Erracht GW J gene 101 mttl. Erracht GW J gene 102 Abbruchkriterium 1 kg gene 103 Abbruchkriterium 1 kg gene 104 Abtruchkriterium 1 kg gene 103 Abbruchkriterium 2 Schadstoffemission Quele überschretet mobilisierbare Masse	98 Zeitnunkt der max Konz	t t	a .	144 በ								
a 0	99 Zeitnunkt P\A-I lherschr	-cmax	- a	45.0								
Construction Imput Description Operation Construction Type A 638,0 Construction Type A 12,2 Construction Type A 12,2 Construction Type A 12,2 Construction Type A 12,2 12,3 Construction Type A 12,2 12,4 Construction Type A 12,4 12,4 Construction Type A 12,4 14,4 Construction Type	100 Zeitpunkt PW-Unterschr	*pwu t	a	683.0								
to Schadstoffemission Quelle Erigent kg 04,019 to Schadstoffemission GW Erigent kg 0,812 to mat. Fracht GW Erigent g'a 3,986 to mat. Fracht GW Erigent g'a 1,272 to mat. Emissionsstarke GW J _{Gmax} mg/(m ² ta) 3,86 to mat. Emissionsstarke GW J _{Gmax} mg/(m ² ta) 3,86 to mobilisierbare Masse	101 Dauer PW-Überschr	*pwu tau	a	638.0								
tos Schadstoffernission GW Exame 100 <td< td=""><td>102 Schadstoffernission Quelle</td><td>Erlass</td><td>ka</td><td>24 019</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	102 Schadstoffernission Quelle	Erlass	ka	24 019								
Instruction End g/a 3,986 Instruction Economic g/a 1,272 Instruction Economic g/g/g/a 1,2 Instruction Economic g/g/g/a 1,2 Instruction Masse Masse g/g/g/a Instruction Masse Masse 24,310 Instruction Economic Economic Economic Instruction Economic Economic Economic Economic Instruction Economic Economic Economic Economic Instruction Economic	103 Schadstoffernission GW	Erone	ka	0.812	-							
Internet GW Ergebnisausgabe Internet GW Ergebnisausgabe Internet GW Jagmac Ing/(m ² ta) Sigmac Ergebnisausgabe Internet GW Jagmac Ing/(m ² ta) Ing/(m ² ta) Ergebnisausgabe Ing/(m ² ta) Ing/(m ²	104 max. Fracht GW	Estmax	g/a	3,996								
tor max. Emissionsstarke GW J _{20.ax} mg/(m ² *a) <u>3,6</u> tor mttl. Emissionsstarke GW J _{20.mttu} mg/(m ² *a) <u>1,2</u> tos mobilisierbare Masse M _{mob} kg 24,310 tos Abbruchkriterium 1: tia Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum tia Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse W ↔ N_FalA_trall B_/ Gaphi, / Wetetabele / SHR_SHR_/ Eddagr / Agand / Suffdater / Id-Avorgank / Id-Organk / Bo-Abbau / Koze-SH / Schadstoffmasse /MW / Teerd / Pulwerte / Ø55/ 14 Register/ Tabellenblätter	105 mittl. Fracht GW	E _{2mittel}	g/a	1,272				aebn	nisar	Isgabe		
tor (mttl. Emissionsstarke GW J _{2mittal} mg/(m ² *a) 1,2 toa (mobilisierbare Masse M _{mob} kg 24,310 toa (Abbruchkriterium 110 111 112 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum 113 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse 114 + M\ Fall A, trell e, Geodie / Weteladele / SWC GWK / False / Azara / Suffdam / Id-Arogank / Id-Organk / Bo Abbru / Kore-GW / Schadstoffmasse / HW / Teeral / Endwerte / GES / 11 PC Berek	106 max. Emissionsstärke GW	Jerman	mg/(m ² *a)	3.6				30.21		30.00		
tos mobilisierbare Masse tos Moneste Abbruchkriterium til Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum til Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse til + + + N Feld / ref / Grocht / Writestole / Swit Gwin / Feldar / Id-Worgank / Id-Organk / Bie-Abbat / Kors-GW / Schadstoffmasse / MW / Teerit / Pulwets / GES + + + + + + + + +	107 mittl, Emissionsstärke GW	مدسم الم	mg/(m ² *a)	1.2			-					
International Abbruchkriterium International Abbruchkriterium 110 110 111 111 112 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum 113 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse 113 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse 113 Abbruchkriterium 2: Schadstoffemisse / MW / Teeroll / Pulmente / GPS 113 Abbruchkriterium 2: Schadstoffemisse / MW / Teeroll / Pulmente / GPS 113 Abbruchkriterium 2: Schadstoffemisse / MW / Teeroll / Pulmente / GPS 113 Abbruchkriterium 2: Schadstoffemisse / MW / Teeroll / Pulmente / GPS 114 >> 115 >> 116 >> 117 >> 118 >> 119 Abbruchkriterium 2: Schadstoffemisse / MW / Teeroll / Pulmente / GPS 111 >> 1115 >> 1115 >> 1115 >> 1116 >> 1117 >> 1118 >> 1118 >> 1119 >> 1118 >> 1119 >> 1119 >> 11119 >> 1119	108 mobilisierbare Masse	M	ka ka	24.310								
110 111 112 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum 113 Abbruchkriterium 2: Schadstoffmission Quelle überschreitet mobilisierbare Masse K + + N \FelA \real P, Gorphy / Wetstabele / SWR.GWN / Fekkan / Bakargunk / Bokbau / Kon-GW / Schadstoffmasse / MW / Teerd / Profeerte / GPS / +	109 Abbruchkriterium			2.1010								
111 112 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum 113 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse 114 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse 115 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse 116 Jelle 0, Gopbil / Wentebele / SWR GWN / Feldug / Sound / Stuffdeen / Id-Acceptait / Bo-Abbau / Kore GW / Studstoffmesse / MW / Teerd / Pulwerte / GFS / Id 111 Peret Register/ Tabellenblätter	110											
Tiz poducink terium 1. scholadsformission Quelle überschneiden zusaan mit of with the office of the office offic	111 449 Abbruchkritorium 1: koine Lin	tareebraitung dag	DM im Doroc	hnungezoitroum								
Compare / Index / Index / Schools / Wet Control / Feldage / Against / Schools / Index organit / Index org	113 Abbruchkriterium 2: Schadst	offemission Quel	le überschreite	rmanyszeitraum t mobilisierbare Ma	asse							
Beret Register/ Tabellenblätter	H + H Fall A Fall B / Graphik /	Wertetabele SWR	GWN / Feldkap /	Äquival / Stoffdaten /	kd-Anorganik 🔏 kd-	-Organik / Bio-Abba	u 🛛 Konz-GW 🔏 Schadsb	offmasse 🔏 M	MKW ∕Teer	öl / Prüfwerte / GFS /	1	•
Register/ Tabellenblätter	Bereit					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			~			
Register/ Tabellenblätter												
Tabellenblätter	$\langle \rangle$	D	1									
Tabellenblätter	\sim	Regis	ter/									
	ľ	Tabel	lenblät	ter								

Abb. 6: Aufbau von Tabellenblatt Fall B

A 3.3.2 Ergebnisdarstellung (Registerfarbe rot)

Das Tabellenblatt **Graphik** (Abb. 7) enthält das Ergebnis der Transportbetrachtung in Form einer graphischen Darstellung des Konzentrationsverlaufes am Ort der Beurteilung (OdB) über die Zeit. Auf der x-Achse sind die Jahre nach Prognosebeginn aufgetragen, auf der y-Achse die Stoffkonzentration $c_{s2}(t)$ am Ort der Beurteilung (OdB) und der Prüfwert bzw. die GFS sofern vorhanden als Bezugsgröße in [µg/l].

Abb. 7: Tabellenblatt Graphik mit Konzentrationsentwicklung am Ort der Beurteilung (OdB)

Das Tabellenblatt *Wertetabelle* (Abb. 8) beinhaltet die Zahlenwerte der Konzentrations- und Frachtentwicklung am Ort der Beurteilung über den gesamten Prognosezeitraum. Die Werte sind die Grundlage für die Erstellung der Graphik. Für den Fall B (abklingende Quellkonzentration) wird in der Spalte D zusätzlich die Entwicklung der Quellkonzentration angezeigt. Die Daten können zur weiteren Auswertung kopiert oder gespeichert werden.

2.	A	В	С	D	E	F
1	Konzentr	ations- und Fra	achtentwicklung	im Progno	sezeitrau	m
2	Jahr	Konz. OdB	Fracht OdB	Konz. Quelle		
3	t	cs2(t)	Es2(t)	cs1(t)		
4		(mikro_g/l)	(g/a)	(mikro_g/l)		
5	1	0,0	0,000			
6	2	0,0	0,000	737,4		
7	3	0,0	0,000	731,2		
8	4	0,0	0,000	725,0		
9	5	0,0	0,000, 0	718,9		
10	6	0,0	0,000, 0	712,8		
11	7	0,0	0,000, 0	706,8		
12	8	0,0	0,000, 0	700,8		
13	9	0,0	000,0	694,9		
14	10	0,0	0,000	689,0		
15	11	0,0	0,000, 0	683,2		
16	12	0,0	0,000, 0	677,4		
17	13	0,0	0,000, 0	671,7		
18	14	0,0	0,000, 0	666,0		
19	15	0,0	0,000, 0	660,4		
20	16	0,0	0,000, 0	654,8		
21	17	0,0	0,000, 0	649,3		
22	18	0,0	0,000, 0	643,8		
23	19	0,0	0,000, 0	638,3		
24	20	0,0	0,000, 0	633,0		
25	21	0,0	0,000, 0	627,6		
26	22	0,0	0,000	622,3		
27	23 0,0		0,000, 0	617,0		
28	24	0,0	0,000, 0	611,8		
29	25	0,0	0,000, 0	606,7		
30	26	0.0	0.000	601.6		

Abb. 8: Aufbau des Tabellenblatts Wertetabelle (Fall B)

	A	В	E	F	Н	J
1	Abschätzung d	er Sicke	rwasserrate/Gr	undwa	sserneubildung	
2	(nach Beims&Gutt)					
3	nur zur groben Abso	chätzung an	zuwenden!			
4	wenn Daten vorhande	n: Berechnur	ng nach DIN 19687 bz			
5	(falls Hangneigung vor	rhanden, Nie	derschlagsmenge red	uzieren)		
6	gelbe Felder: Einga	befelder				
7						
8	Tab.1: Werte nach Be	eims (2002)				
9	Bodentype	en	Vegetations	art	Versiegelungsgrad	
10	Bezeichnung	Symbol	Bezeichnung	Symbol	Flächenanteil	
11					(%)	
12	Sand	S	Ödland	Ô	0	
13	lehmiger Schluff	Uls	Gras	G	25	
14	sandiger Ton	Ts2	landw. Nutzfläche	N	50	
15	toniger Lehm	Lt3	Wald	W	75	
16						
17						
18	Niederschlag	Bodenart	Vegetations	art	Versiegelungsgrad	Grundwasser-
19					Flächenanteil	neubildung
20	(mm/a)	Symbol	Bezeichnung	Symbol	(%)	(mm/a)
21	650	S	Ödland	Ö	0	263
22		<u> </u>				
22 23		nur Eingabe	von Werten aus Tab	. 1 erlaubt		

Abb. 9: Tabellenblatt SWR_GWN zur Abschätzung der Grundwasserneubildung nach Beims&Gutt

A 3.3.3 Hilfstabellenblätter (Registerfarbe grün)

Das Tabellenblatt **SWR**_*GWN* (Abb. 9) dient zur einfachen Abschätzung der Sickerwasserrate bzw. der Grundwasserneubildung, wenn für die Anwendung genauerer Verfahren (z. B. DIN 19687 bzw. TUB-BGR) keine ausreichenden Standortdaten vorliegen. Es beruht auf der in Kap. A 2.1 beschriebenen Methode nach Beims&Gutt [41]. Eingabedaten sind der Jahresniederschlag, der Bodentyp, die Nutzung sowie der Versiegelungsgrad (0 %, 25 %, 50 %, 75 %).

Mit dem Tabellenblatt *Feldkap* (Abb. 10) können die Parameter Feldkapazität und Luftkapazität für die in der KA5 [47] vorhandenen Bodenarten berechnet werden. Der Korrekturfaktor KF bei erhöhten Grobbodengehalten (Kornanteil > 2mm) wird nach der in der KA4 [11] angegebenen Formel berücksichtigt:

KF = (100 - Vol% Grobbodenanteil)/100.

Bei erhöhtem Humusgehalt werden die Zuschläge entsprechend Tab. 72 KA5 berücksichtigt.

8	A	В	С	D	G	1	J	K	L
1	Feld/Luft-Ka	oazität nacl	n KA 4/5						
2	Die Eingabe der Fel	dkapazität in der	n Blättern Fall A bzw	Fall Bierfolgt als V	olumenanteil in 9	8			
3	Sie entspricht der W	assermende di	e in Poren mit einem	Äquivalentdurchn	resser von 50 m	m (entsprecher	d einer Saur	isnannung nF	:
4	> 1.8 für Reinsande	(acconnenge, ar ≥2.5) dehunder	n ist	, igan aiontaaronn		in (entopreenter	la cilici caaş	jopannang pr	
5	Die Feldkanazität ist	nehen der Rode	nart von der Trocker	rohdichte ahhänd	in Esistidie Kla	sseneinteilung	nach Tahi 21	KA 5 zugrup	tralan ah
6	Bei Böden mit Groh	hodenanteil wird	die Feldkanazität en	tenr KAAIS 205 m	ng. Eo lot ale Ria hit dem korrektur	faktor (100-Vol.)	% Grobbode	norro Lagrani nontoil\(100	Jo gologi.
7	entenrechand dam	Volumenanteil di	ale i clakapazitat cli se Grobhodone rodu	7iort	In dem Konektar	antoi (100-401.		Tanten/100	
0	Poi Bödon mit organ	volumenanten u	vird die Foldkeneritö	zien. tum oinen Zuechl	ag optoprochone	1 Tob 720/A 5 a	rhöht		
0	Der Zuechlag ist ab	händid vom Hum	wiru ule i elukapazita wegobolt oc jet dio l	l'unn einen ∠ustin Vlaccanaintailung	ag entopretment nach Tab. 16///	5 Tuqrundo do	loat		-
3	Der Zuschlag ist abi	nangiy vom Hun	lusyenali, es íst ule l	Riasserieinteilung		vo zagranae ge	iegi.		
10	gallas Faldari Fingal	ofolder (mit Ver	(abouton)					12	
11	geine Feider, Eingal grüne Feider: Doder	bereider (mit Vol	gabewerten)	3			0	<u></u>	
12	grune reider. Doder	naiten nach Na :	,	3			<u></u>		
10	rote Schint, berech	nete werte							
14	Dedenart	Trackan	Crabbadan	Humanahalt	Faldkanarität	Lufflen orität		<u>.</u>	
15	Bodenart	Trocken-	Groppoden-	Humusgenalt	Feidkapazitat	Luntkapazitat			
10		rondicite	Anteil		. Teb 70	- T-1 70			
11		ρι	Korngroße>2 mm		n. rap. 70	n. rap. 70			
18		(kg/dm~)	(Vol %)	(Masse %)	(Vol %)	(Vol %)			
19	Ss	1,5	0	0	. 11	32			
20	SI2	1,5	0	0	25	18			
21	SI3	1,5	0	0	27	15			
22	SI4	1,5	0	0	30	12			
23	Slu	1,5	0	0	33	10			
24	St2	1,5	0	0	22	20			
25	St3	1,5	0	0	30	14			
26	Su2	1,5	0	0	23	21			
27	Su3	1,5	0	0	29	14			
28	Su4	1,5	0	0	32	11			
29	Ls2	1,5	0	0	34	9			
30	Ls3	1,5	0	0	33	9			
31	Ls4	1,5	0	0	32	11			
32	Lt2	1,5	0	0	36	7			
33	Lt3	1,5	0	0	39	5			
34	Lts	1,5	0	0	37	6			
35	Lu	1,5	0	0	36	7			
36	Uu	1,5	0	0	38	7			
37	Uls	1,5	0	0	35	8			
38	Us	1,5	0	0	35	9			
39	Ut2	1,5	0	0	37	6			
40	Ut3	1,5	0	0	37	6			
41	Ut4	1,5	0	0	37	7			
42	Tt	1,5	0	0	43	3			
43	TI	1,5	0	0	41	4			
44	Tu2	1,5	0	0	42	4			
45	Tu3	1,5	0	0	38	6			
46	Tu4	1,5	0	0	37	6			
47	Ts2	1,5	0	0	39	4			
48	Ts3	1,5	0	0	37	6			
49	Ts4	1,5	0	0	32	10			
50	Sande								
51	fS, fSms, fSgs	1,5	0	0	14	31			
52	mS, mSfs, mSgs	1,5	0	0	10	32			
53	gS	1,5	0	0	8	33			
54									
55									

Abb. 10: Tabellenblatt *Feldkap* zur Ermittlung der Feldkapazität und der Luftkapazität nach KA5

Mit dem Tabellenblatt **Äquival** (Abb. 11 und 12) können mehrschichtige Bodenprofile sowie die Flüchtigkeit bei leichtflüchtigen Stoffen berücksichtigt werden. Die Berechnung erfolgt nach dem Konzept der äquivalenten Parameter (Kap. A2.3 und A2.6). Es können bis zu 10 unterschiedliche Schichten eingegeben werden.

	A	В	С	D	F	H	J
1	Berechnung äquivalenter Pa	arameter f	ür Mehrsch	nicht-Bodenp	rofil und flüch	ntige Stoffe	
2			Ver 2.3				
3	gelbe Felder: Eingabefelder						
4	Hinweis: eine Schicht wird beru	icksichtigt,	wenn ein M	ächtigkeitswer	t angegeben is	t. Wenn ein Mächtigk	eitswert für
5	Schicht i angegeben ist, müsse	n auch die	Parameter a	ausgefüllt werd	en. Soll die So	hicht gelöscht werde:	n, muss die
6	entsprechende Zeile leer sein	Zelle mit r	echter Maus	taste <u>einzeln</u> a	uswählen und	Inhalte löschen)	
7							
8							
9	Parameter	Symbol	Einheit	Wert			
10	Fall A oder B			В			
11	Stoff			Trichlorethen			
12	Sickerwasserrate	SWR	(mm/a)	300,000	[
13	Henry-Konstante	н	(-)	2,303E-01			
14	Diffusionskoeff. Wasser	Dw	m²/a	0,025			
15	Diffusionskoeff. Luft	Dg	m²/a	215,011			
16	Dispersivitäts-Skalenfaktor	fd	(-)	0,100			
17							
18	Schicht-Nr	Bodenart	Mächtigkeit	Feldkapazität	Luftkapazität	Trockenraumdichte	lin. Verteilungs-
19		KA5					koeffizient
20	i		z(i)	Fk(i)	Lk(i)	pb(i)	kd(i)
21			(m)	(Vol-%)	(Vol₋%)	(kg/dm³)	(l/kg)
22	1	Su2	4	27	21	1,6	2,033
23	2						
24	3						
25	- 4						
20	C						
28	7						
29	8						
30	9						
31	10						
32	Summe/äquiv.		4	27,0	21,0	1,600	2,063

Abb. 11: Eingabeteil des Tabellenblattes *Äquival* zur Berücksichtigung von Mehrschichtprofilen und leichtflüchtigen Stoffen (Fallbsp. 4)

	34	Äquivalente Parameter	Symbol	Einheit	Wert	
	35	Feldkapazität	FK-äq	(%)	27,000	Die Werte der rot unterlegten Zellen
	36	Luftkapazität	LK-äq	(%)	21,000	sind in die Eingabeblätter
ĺ	37	Trockenraumdichte	pb-zs-äq	(kg/dm³)	1,600	Fall A bzw. Fall B zu übertragen
ĺ	38	lin. Verteilungskoeff.	kd-äq	(l/kg)	2,063	
ľ	39	Retardationsfaktor	R-äq	(-)	13,227	
ľ	40	Tortuosität Bodenwasser	⊤w-äq	(-)	0,205	
ľ	41	Tortuosität Bodenluft	∓g-äq	(-)	0,114	
	42	Sickerwassergeschwindigkeit	vsm-äq	(m/a)	1,111	
ſ	43	longitudinale Dispersivität	αzZ	(m)	0,400	
ſ	44	mechanische Dispersion	Dmech	(m ² /a)	0,444	
ĺ	45	molekulare Diffusion	Dmol	(m ² /a)	0,005	
ſ	46	Dispersion Verflüchtigung	Dvol	(m ² /a)	4,382	
ľ	47	Dispersionskoeffizient	Dz-äq	(m²/a)	4,831	
ĺ	48	Dispersivitäts-Skalenfaktor	fd-äq	(-)	1,087	
ľ	49					

Abb. 12: Ergebnis des Tabellenblattes Äquival zur Berücksichtigung von Mehrschichtprofilen und leichtflüchtigen Stoffen (Fallbsp. 4)

Das Tabellenblatt **Stoffdaten** (Abb. 13) enthält die zur Durchführung der Sickerwasserprognose erforderlichen chemisch-physikalischen Stoffdaten für organische Stoffe. Es beinhaltet insgesamt 182 Einzelstoffe, darunter alle organischen Stoffe, für die ein Geringfügigkeitsschwellenwert GFS angegeben ist [38].

Die Stoffdaten stammen aus qualitätsgesicherten international frei zugänglichen Datenbanken (Epi-Suite/US-EPA [48], National Institute of Standards and Technology NIST [49], CalTox [50]). Das Datenblatt ermöglicht die Umrechnung der temperaturabhängigen Daten auf eine vom Nutzer wählbare Temperatur. Ein zusätzliches Feld gibt einen Hinweis auf die Flüchtigkeit des Stoffes. Die Flüchtigkeit wurde nach dem in der Literatur [61] beschriebenen Verfahren abhängig vom Wert der Henry-Konstante in die Klassen "gering", "mittel" und "hoch" eingestuft. Für Stoffe mit geringer Flüchtigkeit ist eine Berücksichtigung bei der Sickerwasserprognose über äquivalente Parameter nicht erforderlich. Der Diffusionskoeffizient im freien Wasser wird nach Worch [59], der Diffusionskoeffizient in freier Luft nach der FSG-Methode [60] berechnet.

	A	В	C	D	Е	F	G	J	K	0	Р	T	
1	Stoffdaten für organisch	e Stoffe											
2	J			Einstufung	der Flüchtig	keit (n. Handb	ook of Che	emical Property	Estimation I	lethods)	8		1
3	grüne Felder: nach EPI-Suite I	Datenbank de	r US-EPA	Henry-Kon	stante H								1
4	gelbe Felder: Eingabefelder			H< 1,26e-5:	gering						8		1
5				1,26e-5 <h<< td=""><td>4,087e-2: mit</td><td>tel</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></h<<>	4,087e-2: mit	tel							
6				H>4,082e-2	: hoch		5						
7													
8						Flüchtigkeit		Dampfdruck	Wasser-	Henry-	Diffusions-	Diffusions-	
9	Stoff	Temperatur	Summen-	Molgew.	CAS-Nr	Klasse	Log (Koc)	bei T Spalte B	Löslichkeit	Konstante	koeffizient	koeffizient	
10	Gruppe/Name		Formel						(25°C)		Luft (n. FSG)	Wasser (n. Worch)	
11										bei T Spalte B	bei T Spalte B	bei T Spalte B	
12		(°C)		(g/mol)			(l/kg)	(mm Hg)	(mg(l)	(-)	(m²/a)	(m²/a)	
45	Aromaten/Alkyl-Aromaten			and an and a second					20100000000		500000		
46	Benzol	25	C6H6	78,11	71-43-2	hoch	2,219	9,480E+01	1,790E+03	2,268E-01	294,699	0,034	
47	Toluol	25	C7H8	92,14	108-88-3	hoch	2,428	2,840E+01	5,260E+02	2,714E-01	271,355	0,031	
48	Ethylbenzol	25	C8H10	106,17	100-41-4	hoch	2,714	9,600E+00	1,690E+02	3,221E-01	253,076	0,029	
49	Xylol (Mittelwert, o,m,p)	25	C8H10	106,17	1330-20-7	hoch	2,640	8,370E+00	1,430E+02	2,624E-01	253,076	0,029	
50	1,2,4 Trimethylbenzol	25	C9H12	120,20	95-63-6	hoch	2,856	2,100E+00	5,700E+01	2,518E-01	238,251	0,027	
51	Ethyltoluol	25	C9H12	120,20	620-24-4	hoch	2,924	3,040E+00	3,999E+01	3,815E-01	238,251	0,027	
52	Propylbenzol	25	C9H12	120,20	103-66-1	hoch	2,980	3,420E+00	5,220E+01	4,292E-01	238,251	0,027	
53	Styrol	25 25	C8H8	104,15	100-42-5	hoch	2,/14	6,400E+00	3,100E+02	1,124E-01	255,466	0,029	
54	Cumol	25 05	C9H12	120,20	98-82-8	nocn	2,912	4,500E+00	6,130E+01	4,/UUE-01	236,251	0,027	
22	inoan	20	Callo	110,10	490-11-7	mittei	2,990	1,470E#00	1,09000+02	0,210E-00	240,215	0,027	-
20	NTDE												-
0/ 50	MIDE	20	058100	99.15	1634.04.4	mittel	0.701	ວ ຄາກສະຫວ	5 100E±04	2 200⊑ 02	777 395	0.021	-
00 50	MIDE	20	Contzo	00,10	1004-04-4	miller	0,721	2,0000#02	0,100⊑#04	Z,339E-02	277,300	0,001	-
60	THKM												-
61	halogenierte Alkene												
62	Tetrachlorethen (PER)	25	C2CI4	165.83	127-18-4	hoch	2 029	1.850E+01	2.060E+02	7 235E-01	204 234	N N23	-
63	Trichlorethen (TRI)	25	C2HCI3	131.39	79-01-6	hoch	1.831	6.900E+01	1.280E+03	4.026E-01	228,239	0.025	-
64	cis-Dichlorethen	25	C2H2Cl2	96.94	156-59-2	hoch	1.641	2.010E+02	6.410E+03	1.668E-01	264,630	0.030	
65	Vinvlchlorid (VC)	25	C2H3CI	62,50	75-01-4	hoch	1,376	2.980E+03	8.800E+03	1,136E+00	330,233	0.038	
66	/			ter dista		1000						. In Money term	
67	halogenierte Alkane												
68	Tetrachlorkohlenstoff	25	CCI4	153,82	56-23-5	hoch	1,687	1,150E+02	7,930E+02	1,128E+00	211,662	0,023	
69	Trichlormethan	25	CHCI3	119,38	67-66-3	hoch	1,545	1,970E+02	7,950E+03	1,500E-01	239,042	0,027	
70	Dichlormethan	25	CH2CI2	84,93	75-09-2	hoch	1,376	4,350E+02	1,300E+04	1,328E-01	282,578	0,032	
71	Chlormethan	25	CH3CI	50,49	74-87-3	hoch	1,155	4,300E+03	5,320E+03	3,605E-01	369,361	0,042	
72	1,1,2,2 Tetrachlorethan	25	C2H2CI4	167,85	79-34-5	mittel	2,029	1,330E+01	2,830E+03	1,500E-02	203,065	0,022	
73	1,1,1,2 Tetrachlorethan	25	C2H2CI4	167,85	630-20-6	hoch	1,985	1,200E+01	1,070E+03	9,891E-02	203,065	0,022	
74	Trichlorethan (1,1,1)	25	C2H3CI3	133,41	71-55-6	hoch	1,687	1,240E+02	1,290E+03	7,030E-01	226,571	0,025	
75	Dichlorethan (1,2)	25	C2H4CI2	98,96	107-06-2	hoch	1,641	7,890E+01	8,600E+03	4,823E-02	261,956	0,030	
76	Chlorethan	25	C2H5CI	64,52	75-00-3	hoch	1,376	1,010E+03	6,710E+03	4,537E-01	324,852	0,037	

Abb. 13: Aufbau des Tabellenblattes Stoffdaten

Das Tabellenblatt *kd-Anorganik* (Abb. 14 und Abb. 15) dient der Berechnung des linearen Verteilungskoeffizienten (k_d-Wert) für anorganische Stoffe (Schwermetalle), der als Eingabewert in den Tabellenblättern *Fall A* und *Fall B* benötigt wird.

Grundlage der Berechnung sind die aus Pedotransferfunktionen abgeleiteten Freundlich-Parameter, mit denen ein linearisierter k_d -Wert ermittelt wird (Abb. 14).

	A	В	C	D	E	F	G	Н	-	J	L	N	0	Q	S
1	kd-Wert	e And	organik												
2								wichtiger H	inweis:	Die Werte	sind als	Orientierung	gedacht,		
3	gelbe Felde	r: Eing	abefelder					sofern kein	e stand	ortspezifis	schen W	erte aus Labo	r-/Feldunte	rsuchungen	vorliegen
4	grüne Felde	er: Regr	essionskoeffi	zienten B	ericht BGR	/2005 [6]									
5	rote Schrift:	berech	nete Werte												
6	Freundlic	h-Mod	ell : c _s =K _{d-l}	r*c ⁿ				Die kd-Werte	in den rot	t markierter	ı Zellen si	nd in den Tabell	enblättern Fa	ll A bzw Fall B	einzusetzen
7	log K _{d·fr} =log	j K [*] +a*j	H+b*log Ton	+c*log C _{or}	g										
8	Verwendu	ing su	bstratüber	greifend	er Sorpti	onsisothe	rmen n. Be	ericht BGR/2	005 [6]						
9															
10			Freundlich-F	legression	nskoeffizie	nten (Berich	t BGR/2005)		Bodenke	nngrößen			Linear. Freu	ndlich-Isoth.	
11	Element	Sym	Tab. BGR	log K*	a (pH)	b (log Ton)	c (log Corg)	n-Freundlich	pН	Corg	Ton	K_d -Freundlich	¹ c _{si} (=Quellk.)	k _d -linearisiert	
12										(%)	(%)	(µg ⁽¹⁻ⁿ⁾ ∗l ⁿ /kg)	µg/l	(l/kg)	
13	Cadmium	Cd	Tab. 3.2-6	-0,827	0,521	0,419	0,376	0,836	4,0	0,10	1,0	7,6	500,0	3,0	
14	Chrom	Cr	Tab. 3.2-6	3,09				0,799	6,0	0,10	10,0	1230,3	500,0	391,4	
15	Kupfer	Cu	Tab. 3.2-6	0,764	0,332	0,41		0,758	6,0	0,10	10,0	1465,5	500,0	369,6	
10	Molybdan	Mo	Tab. 3.2-11	5,309	-0,663	0,/32	0.000	0,628	6,0	0,10	10,0	115,6	500,0	14,0	
1/	NICKEI Die:	NI	1 ab. 3.2-6 T-1-2-2-44	-0,122	0,365	U,473	U,226	0,751	6,0	0,10	10,0	200,5	500,0	33,U 3703 5	
10	Antimon	Sh	Tab. 3.2-11 Tab. 3.2.6	1,201 0,602	0,452	0,405	.0.202	0,01	0,0	0,10	10,0	19400,9 AG 0	250,0	2/05,5	
20	Thallium	TI	Tab. 3.2-0 Tab. 3.2.11	0.718	0,000	0,770	-0,232	0,040	0,0	0,10	10,0	40,0	100,0	124,J	
21	Zink	Zn	Tab. 3.2-6	0,248	0,456	0,381	0.27	0.575	6.0	0,10	10,0	1244.5	5000.0	42.1	
22						-1441	- 12.						¹ Vorgabewert:	10*PW	

Abb. 14: Tabellenblatt kd-Anorganik/Freundlich-Parameter

Ersatzweise kann insbesondere für diejenigen Schwermetalle, für die keine Freundlich-Parameter aus Pedotransferfunktionen vorliegen, das Verfahren nach van den Berg & Roels [13]/Anhang 2 zur Berechnung eines linearen k_d-Wertes herangezogen werden (Abb. 15).

25	Abschätzung	g linea	rer Verteilun	gskoeffizi	enten nach	van den Be	rg & Roels (1991)				
26						3						
27					Regressio	nskoeffizien	ten		Bodenke	nngrößen		kd-Wert
28	Element	Sym							pН	Corg	Ton	
29				Co	C1	C2	C3	C4		(%)	(%)	(l/kg)
30	Arsen	As		349	942	9,42	1,79	-0,16	6,0	0,10	10,0	634,893
31	Blei	Pb		0,0008	0,002	0	2,85	-0,17	6,0	0,10	10,0	1432,489
32	Cadmium	Cd		2408	4309	129,26	0,57	0	4,0	0,10	1,0	7,006
33	Chrom	Cr		15,18	61,14	0	2,51	-0,21	6,0	0,10	10,0	10100,631
34	Kupfer	Cu		2168	8673	86,73	1,36	-0,12	6,0	0,10	10,0	314,996
35	Nickel	Ni		42465	424650	0	0,4	0	6,0	0,10	10,0	320,002
36	Quecksilber	Hg		0,00089	0,0024	0,0055	2,82	-0,163	6,0	0,10	10,0	1919,899
37	Zink	Zn		130	598	2,99	0,89	-0,02	6,0	0,10	10,0	118,685
38	Zinn	Sn		0	14367	431	1,03	-0,08	6,0	0,10	10,0	43,012
39												

Abb. 15: Tabellenblatt kd-Anorganik/Verfahren nach van den Berg & Roels

Mit dem Tabellenblatt *kd-Organik* (Abb. 16) wird der lineare Verteilungskoeffizienten (k_d -Wert) für organische Stoffe aus dem log(K_{OC})-Wert des Tabellenblattes *Stoffdaten* und dem vom Anwender ggfs. schichtspezifisch einzugebenden Anteil an organischer Substanz (C_{org}) berechnet.

1	A	В	C	D	E	F	G	Н
1	kd-Werte Organik							
2								
3	gelbe Felder: Eingabefelder (Vor	gabewert:	0,1% Corg)					
4	der koc-Wert wird aus dem Tabel	lenblatt "S	toffdaten" i	übernomm	en			
5								
6	lineares Sorptionsmodell: c	s=k _d *c _w	wichtig	er Hinwe	is: Die We	rte sind als	Orientieru	ng gedacht,
7	k _d = C _{org} *K _{oc}		sofern	keine sta	ndortspez	ifischen W	erte aus	
8			Labor-/	Feldunte	rsuchunge	en vorliege	n	
9								
10	Stoff	Corg	k _d					
11	Gruppe/Name	(%)	(l/kg)					
12								-
45	Aromaten/Alkyl-Aromaten	0.4	0.400			-		
40	Teluel	0,1	0,100					
47	Ethylhenzol	0,1	0.518					
49	Xvlol (Mittelwert, o.m.p)	0.1	0.437					
50	Trimethylbenzol	0,1	0,718					
51	Ethyltoluol	0,1	0,839					
52	Propylbenzol	0,1	0,955					
53	Styrol	0,1	0,518			-		
54	Cumol	0,1	0,817					
55	Indan	0,1	0,995					
50	MTDE							
57	MTRE	0.1	0.005			-		
59	MIDE .	0,1	0,005					
60	LHKW							
61	halogenierte Alkene							
62	Tetrachlorethen (PER)	0,1	0,107					
63	Trichlorethen (TRI)	0,1	0,068					
64	cis-Dichlorethen	0,1	0,044		1			
65	Vinylchlorid (VC)	0,1	0,024	1	_			
66		I	I	I				

Abb. 16: Tabellenblatt kd-Organik zur Berechnung des kd-Wertes für organische Stoffe

9. 	A	D	E	G		K	M	0	Р	
1	Halbwertszeiten für or	ganische	Schadst	offe						
2	Abbau 1. Ordnung									
3				Ultimate Wert	ltimate Wert: kompletter Abbau bis CO2					
4	Datenquellen			Primary Wert:	nur erster Abl	auschritt				
5	Epi-Suite/US-EPA									
6	CalTox	wichtiger	vichtiger Hinweis: Die Halbwertszeiten sind als Orientierung gedacht,							
7		sofern ke	ine stand	ortspezifisch	nen Werte au	is Labor-/Fe	Iduntersuch	ungen vo	rliegen	
8										
9	Stoff	Biowin 3	Biowin 4	CalTox	CalTox	CalTox	CalTox	CalTox		
10		Ultimate	Primary	Oberboden	Wurzelzone	unges. Zone	Grundwasser	Sediment		
11	Gruppe/Name	HWZ	HWZ	HWZ	HWZ	HWZ	HWZ	HWZ		
12	A	(a)	(a)	(a)	(a)	(a)	(a)	(a)		
45	Aromaten/Alkyl-Aromaten	0.175	0.000	0.504	0.504	0.000	0.000	0.011		
40	Toluol	0,175	0,020	0,521	0,521	0,000 0.000	0,000	0,001		
47	Ethylhenzol	0,007	0,017	0.018	0.070	0,235	0,040	0,233		
49	XvIol (Mittelwert omn)	0.085	0,010	0.041	0,010	0,512	0,512	0,504		
50	1,2,4 Trimethylbenzol	0,105	0.024	0.048	0.048	0.048	0.096	0.048		
51	Ethyltoluol	0,090	0,021				-	-		
52	Propylbenzol	0,075	0,018	-	2	-	-	-		
53	Styrol	0,061	0,015	0,123	0,123	0,326	0,326	0,173		
54	Cumol	0,075	0,018	0,022	0,014	0,014	0,027	0,034		
55	Indan	0,090	0,021	1.5			-	-		
56										
57	MTBE	0.004	0.000	0.000	0.005	0.005	0.570	0.404		
58	MIBE	0,091	0,020	0,063	0,285	0,285	0,570	0,194		
60	I HKW									
61	halogenierte Alkene									
62	Tetrachlorethen (PER)	0.313	0.040	1.627	1 627	2.082	1 411	1 411		
63	Trichlorethen (TRI)	0,194	0.030	2.548	2.548	2.074	2.195	0.595		
64	cis-Dichlorethen	0,120	0,022			-	-	-		
65	Vinylchlorid (VC)	0,074	0,017	0,762	0,762	0,712	11,918	3,041		
66								20		
67	halogenierte Alkane									
68	Tetrachlorkohlenstoff	0,448	0,052	0,540	0,540	0,040	0,011	0,510		
69	Trichlormethan	0,184	0,029	0,167	0,167	3,507	3,589	0,256		
70	Dichlormethan	0,114	0,022	1.0			-	-		

Abb. 17: Tabellenblatt Bio-Abbau

Das Tabellenblatt **Bio-Abbau** (Abb. 17) enthält Halbwertszeiten für organische Schadstoffe zur Verwendung als Eingabewert in den Tabellenblättern **Fall A** und **Fall B**. Die Werte können zur Orientierung herangezogen werden, wenn keine standortspezifischen Daten vorliegen.

Das Tabellenblatt *Konz-GW* (Abb. 18) enthält ein einfaches Verfahren zur Abschätzung der Schadstoffkonzentration im Grundwasser, die aus der in das Grundwasser eintretenden Sickerwasserfracht (Ergebnis aus den Tabellenblättern Fall A bzw. Fall B) resultiert. Grundlage ist eine Massenbilanzbetrachtung unter Berücksichtigung der Sickerwasser- und Grundwasservolumenströme (Kap. 8.2). Voraussetzung ist die Kenntnis der Aquifereigenschaften (Durchlässigkeit, Mächtigkeit, Gefälle). Als Abstrombreite ist die Ausdehnung der Kontaminationsfläche senkrecht zur Grundwasserfließrichtung einzusetzen

	A	В	С	D	E
1	Schadstoffkonzentration im G	Grundwass	er		
2	Ver 2.3				
3	Berechnung der aus der in das Grun	dwasser emi	ttierten Sicke	rwasserfracht	
4	resultierenden Konzentrationen im G	rundwasser			
5	Die resultierende Konzentration ents	pricht der übe	er die gewähl	te	8
6	Aquifermachtigkeit gemittelten Konze	ntration .			8
1	Kont. Aquifermachtigkeit. <= Aquiferm	achtigkeit foll 8 und 5 ol	Duuardan ai	itamatiash üharnamm	
8	Die wene aus den Tapelienplattem F	all A und Fai old D15	i 8 werden au	itomatisch üpernomn	ien
10	gelbe Felder: Eingabefelder				
11	grüne Felder: aus Fall A oder Fall B ü	bernommen	er Wert		0
12	grane relation and rain A such rain b a				Q.
13					1
14	Parameter	Symbol	Einheit	Wert	
15	Fall (A oder B)			Α	
16	kontaminierte Fläche	F	m ²	1700,0	
17	Abstrombreite kont. Fläche	Ba	m	40,0	
18	Sickerwasserrate	SWR	mm/a	250,0	
19	max. Konz. am OdB	C _{max}	μg/l	549,9	
20	max. Fracht	E _{s2max}	g/a	233,7	
21	mittl. Fracht	E _{s2mittel}	g/a	148,0	
22	Sickerwasservolumenstrom	Q _{s2}	m³/a	425,0	
23	kont. Aquifermächtigkeit	h _{kont}	m	0,5	
24	Durchlässigkeit Aquifer	kf	m/s	1,0E-03	
25	hydr. Gefälle Grundwasser	- I	m/m	1,0E-03	
26	Filtergeschwindigkeit	vf	m/a	31,5	
27	GW-Volumenstrom	\mathbf{Q}_{gw}	m³/a	630,7	
28	max. Konzentration im GW	C _{gw-max}	μg/l	221,372	
29	mittl. Konzentration im GW	Cgw-mittel	μg/l	140,211	
30	Verdünnungsfaktor (c _{max})	VF	(-)	2,484	
31					

Abb. 18: Tabellenblatt *Konz-GW* zur Abschätzung der resultierenden Schadstoffkonzentration im Grundwasser

Das Tabellenblatt **Schadstoffmasse (Abb. 19)** dient zur Berechnung der vorhandenen Schadstoffmasse aus Bodenuntersuchungen nach Anhang A1.3 der AH-DU. Es können die Ergebnisse von bis zu 5 Sondierungen mit jeweils 5 Schichten berücksichtigt werden.

	А	В	С	D	E	F	G	Н
1	Ermittlung	der Gesan	tschadsto	ffmasse aus sch	ichtbezogenen	Sondierungsdaten		
2	Version 2.4							
3	(n. Arbeitshilfe Ar	hang 1/A1.3)						
4		× /						
5	Größe der Un	tersuchungs	sfläche (m ²):	750				
6								
7	Sondierung	Schicht	Mächtigkeit	Lagerungsdichte	Schadstoffgehalt	schichtbez, flächenspez,	Flächenrepräsentanz	anteilige flächenspez.
8	Nr	Nr			Feststoff	Schadstoffmasse	Sondierung	Schadstoffmasse
q			(m)	(ka/dm ³)	(ma/ka)	(a/m ²)	(%)	(a/m ²)
10	1	1	0.3	(Ng/din)	100.0	(9/11)	(70)	(gin)
10	1	2	0,0	0,0	250.0	350		
12	1	2	0.5	1,4	200,0	000		
12		3	0,0	1,0	1000,0	900		
13	1	4	0,4	C'1	20,0	12		
15	1	~		flächenspez, Scha	dstoffmasse Profil:	1286	100	1286
16	2	1	0					
17	2	2	Ő					
18	2	á	Ő			0		
10	2	1	ő			0		
20	2	5	0			0		
20	2	J	0	flächensnez Scha	dstoffmasse Profil:	0		0
21	2	1	0	naenenspez. eena	astorningsser rom.	0		
22	3	2	0			0		
23	3	2	0			0		
24	3	3	0			0		
25	3	4	0			0		
20	3	0	U	flächenenez Scha	detoffmasse Profil:	0		0
27	ر ۱	1	0	nachenapez. ocha		•		V
28	4	1	0			0		
29	4	2	0			0		
30	4	3	0			U		
31	4	4	U			U		
32	4	5	U	fläckspoper, Saka	latoffmaaaa Brafil:	0		0
33	4	1	0	nachenspez. Schai	ustonnasse From:	U		0
34	о г	2	0			0		
30	5	2	0			0		
36	5	3	0			U		
3/	5	4	0			U		
38	5	5	U	dialana a C	lata finana a D. Cl	0		
39	5			nachenspez. Scha	ustoffmasse Profil :	0	2	0
40						flächenspez. Schadstoffma	sse gesamt (g/m ⁺):	1286
41						Gesamtmasse Untersu	chungsfläche (kg):	964,5

Abb. 19: Tabellenblatt *Schadstoffmasse* zur Berechnung der Schadstoffgesamtmasse aus Bodenuntersuchungen

Das Tabellenblatt **MKW** (Abb. 20) dient zur Abschätzung der Quellkonzentration bei Bodenkontaminationen mit Phasen aus typischen Mineralölprodukten wie Superbenzin, Diesel, Heizöl und Kerosin, wenn keine Laboruntersuchungen (z. B. Säulenversuche) vorliegen. Grundlage der Abschätzung ist das Raoult'sche Gesetz. Die Sättigungskonzentrationen werden aus den Einzellöslichkeiten entsprechend dem einzugebenden Massenanteil in der Phase und dem mittleren Molekulargewicht berechnet. Als Vorgabedaten für die Kohlenwasserstoff-Anteile sind sofern verfügbar, Werte aus der Literatur eingegeben, die vom Anwender durch eigene Daten modifiziert werden können [36], [54-58].

	A	D	E	F	G	Н		J	K	L	М
1	Sättigungskonzentrat	ionen fü	r Kohlei	nwasser	stoffe in	Minerald	blprodul	kten ber	echnet r	ach Rad	oult
2	Version 2.4		gelbe Feld	ler: Eingabe	efelder (Wert	te aus Stoffda	ntenbank, b	zw. DGMK,	Grathwohl)		
3			J	J							
4	rote Schrift: berechnete Werte	ler Sättigun	gskonzentr	ation (zur V	erwendung a	als Anhaltspu	nkt für die	Quellstärke	bei Kontam	ination mit	Phase)
5								Mineral	ölprodukte		
6	Kohlenwasserstoffe	Nor	mal	Su	iper	Super	Plus	Di	esel	Ke	rosin
7		KW-Anteil	Ci,sat	KW-Anteil	Ci,sat	KW-Anteil	Ci,sat	KW-Anteil	Ci,sat	KW-Anteil	Ci,sat
8		(Gew. %)	(µgl)	(Gew. %)	(µgl)	(Gew. %)	(µgl)	(Gew. %)	(µgl)	(Gew. %)	(µgl)
9	Alkane										
10	n-Butan	3,1	2,862E+03	3,3	3,126E+03	3,2	3,025E+03				-
11	i-Butan	1,6	1,145E+03	1,6	1,209E+03	1,6	1,206E+03				
12	n-Pentan	4,8	2,234E+03	3,9	1,825E+03	3,0	1,428E+03				
13	i-Pentan	10,5	6,139E+03	11,0	6,577E+03	11,3	6,742E+03				
14	n-Hexan	2,8	2,736E+02	1,8	1,806E+02	1,1	1,089E+02				
15	i-Hexan	13,3	1,902E+03	9,9	1,448E+03	7,8	1,141E+03				
16	n-Heptan	3,4	1,015E+02	2,3	7,023E+01	3,3	1,005E+02				
17	i-Heptan	3,4	7,584E+01	2,2	5,019E+01	3,3	7,511E+01				
18	n-Octan	4,0	2,034E+01	4,0	2,080E+01	8,3	4,306E+01				
19	i-Octan	3,9	7,331E+01	4,0	7,690E+01	8,3	1,592E+02	7,0	2,691E+02		
20	n-Nonan	1,3	1,088E+00	1,3	1,113E+00	0,8	6,833E-01	2,0	3,424E+00		-
21	n-Decan	1,1	3,538E-01	1,1	3,618E-01	1,1	3,610E-01	7,0	4,605E+00		-
22	n-Dodedekan							8,0	3,128E-01		-
23	n-Tetradekan		-					8,0	1,597E-01		-
24	n-Hexadecan		-					7,0	5,008E-02		-
25	n-Octadecan							7,0	4,633E-03		-
26	n-Eikosan							4,0	2,395E-04		-
27	Summe Alkane	53,2	1,483E+04	46,4	1,459E+04	53,1	1,403E+04	50,0	2,777E+02	0,0	0,000E+00
28	Cycloalkane										
29	Cyclopentan	1,0	1,859E+03	0,8	1,641E+03	0,6	1,278E+03	3,0	1,201E+04		
30	Cyclohexan	1,5	8,396E+02	0,7	4,176E+02	0,4	2,406E+02	4,0	4,705E+03		-
31	Cycloheptan							3,0	1,650E+03		-
32	Cyclooctan				-		-	3,0	3,801E+02		-
33	Summe Cycloalkane	2,4	2,699E+03	1,5	2,059E+03	1,1	1,519E+03	13,0	1,875E+04	0,0	0,000E+00
34	Alkene										
35	Buten	1,1	3,900E+03	1,4	4,807E+03	0,9	3,304E+03				-
36	Penten	4,4	8,190E+03	3,4	6,458E+03	1,3	2,464E+03		· · ·		-
37	Hexen	2,2	1,150E+03	1,9	1,016E+03	0,5	2,668E+02	2,0	2,139E+03		
38	Hepten	1,3	1,643E+02	2,2	2,843E+02	1,1	1,418E+02				
39	Ucten	0,9	1,906E+01	2,0	4,331E+01	1,2	2,593E+01		1.1		
40	Nonen	1,2	5,2/0E+00	1,0	4,491E+00	0,7	3,13/E+00		-		-
41	Decen	1,2	7,533E-01	0,8	5,136E-01	0,4	2,562E-01	3,0	3,852E+00		-
42	Summe Alkene	12,3	1,343E+04	12,7	1,261E+04	6,1	6,206E+03	5,0	Z,143E+03	0,0	0,000E+00
43	Aromaten	0.0	4.7055.04	0.0	4.7045.04	0.7	4.0545.04				
44	Benzoi	0,9	1,765E+04	0,9	1,/64E+04	0,7	1,351E+04		1.1		
45	TOIUOI 4 N. N. / Graphik / Waytotabella / GW		3,3Z3E+04	/ Stoffdates	0,01/E+04	12,5 k / kd.Oraacili	0,283E+04	/ Kopa CW	- Schadstoffere		- Teeröl / Dröfm

Abb. 20: Tabellenblatt MKW zur Abschätzung der Sättigungskonzentration für einzelne Komponenten in Mineralölprodukten

Analog zum Tabellenblatt **MKW** dient das Blatt **Teeröl** (Abb. 21) zur Abschätzung der PAK-Quellkonzentration bei Bodenkontaminationen mit Teerölphase, wenn keine Laboruntersuchungen (Säulenversuche) vorliegen. Grundlage der Abschätzung ist das Raoult'sche Gesetz. Die Sättigungskonzentrationen werden aus den Einzellöslichkeiten (subcooled-Werte) entsprechend dem einzugebenden Massenanteil in der Phase und dem mittleren Molekulargewicht berechnet. Die Tabelle enthält die Zusammensetzung typischer Teerölprodukte aus der Literatur [36], [51].

Die Tabellenblätter **Prüfwerte** und **GFS** enthalten die Prüfwerte für den Wirkungspfad Boden-Grundwasser nach Anhang 2 Nr. 3.1 der BBodSchV und die Geringfügigkeitsschwellenwerte nach LAWA [38].

	A	D	E	F	G	H		J	K	L	M	
1	Sättigungskonzentratio	nen für d	ie 16 EP	A-PAK in	Teerölp	rodukten	berech	net nach	Raoult			
2	Version 2.4		Daten aus D	iana Loyek, 19	998							
3	Hinweis: Zur Berechnung der Sättigur	ngskonzentratio	inen werden o	die subcooled-	Löslichkeitsw	verte verwende	t					
4	rote Schrift: berechnete Werte der	r Sättigungsko	nzentration	(zur Verwen	dung als Anl	haltspunkt für	r die Quells	tärke bei Ko	ntaminatio	n mit Phase)		
5						Teerölpro	dukte					
6	16 EPA PAK	Pe	ch	Steinko	hlenteer	Roht	teer	Kre	osot	Antrac	en-Öl	
7		PAK-Anteil	Ci,sat	PAK-Anteil	Ci,sat	PAK-Anteil	Ci,sat	PAK-Anteil	Ci,sat	PAK-Anteil	Ci,sat	
8		(Gew. %)	(µgl)	(Gew. %)	(µgl)	(Gew. %)	(µgl)	(Gew. %)	(µgl)	(Gew. %)	(µgl)	
9	Naphthalin	0,00	0,00E+00	4,50	1,09E+04	12,30	2,64E+04	9,49	1,23E+04	0,37	6,00E+02	
10	Acenaphthylen	0,00	0,00E+00	0,24	2,11E+02	1,88	1,46E+03	0,00	0,00E+00	0,00	0,00E+00	
11	Acenaphthen	0,00	0,00E+00	0,07	2,15E+01	0,08	2,17E+01	6,07	9,96E+02	1,98	4,07E+02	
12	Fluoren	0,00	0,00E+00	0,80	2,27E+02	1,46	3,66E+02	4,41	6,68E+02	5,18	9,82E+02	
13	Phenanthren	0,35	6,11E+01	1,65	2,00E+02	4,44	4,76E+02	11,51	7,45E+02	17,01	1,38E+03	
14	Anthracen	0,14	1,89E+01	0,58	5,41E+01	0,75	6,19E+01	0,81	4,04E+01	0,92	5,75E+01	
15	Fluoranthen	0,78	3,04E+01	0,69	1,86E+01	2,08	4,97E+01	4,95	7,14E+01	7,52	1,36E+02	
16	Pyren	0,59	2,95E+01	0,44	1,53E+01	1,28	3,93E+01	3,14	5,83E+01	4,31	1,00E+02	
17	Benzo(a)anthracen	0,92	5,14E+00	0,47	1,82E+00	0,77	2,64E+00	2,06	4,26E+00	0,48	1,24E+00	
18	Chrysen	0,98	7,24E+00	0,37	1,90E+00	0,75	3,40E+00	2,12	5,81E+00	0,31	1,06E+00	
19	Benzo(b)fluoranthen	0,67	3,98E-01	0,35	1,44E-01	0,50	1,82E-01	1,68	3,70E-01	0,29	8,00E-02	
20	Benzo(k)fluoranthen	0,68	2,02E-01	0,36	7,42E-02	0,50	9,12E-02	1,68	1,85E-01	0,29	4,00E-02	
21	Benzo(a)pyren	0,47	1,05E+00	0,22	3,40E-01	0,37	5,06E-01	1,63	1,35E+00	0,18	1,86E-01	
22	Indeno(123-cd)pyren	0,19	4,27E+00	0,17	2,65E+00	0,24	3,31E+00	1,29	1,08E+01	0,29	3,03E+00	
23	Dibenzo(a,h)anthracen	0,46	8,06E-01	0,14	1,70E-01	0,19	2,04E-01	2,40	1,56E+00	0,26	2,11E-01	
24	Benzo(ghi)perylen	0,34	1,38E-01	0,20	5,65E-02	0,22	5,49E-02	1,00	1,51E-01	0,19	3,59E-02	
25	Summe 16 EPA PAK	6,57	1,59E+02	11,25	1,17E+04	27,81	2,88E+04	54,24	1,49E+04	39,58	3,67E+03	
26	Rest	65,06		61,37		59,46		6,97		11,95		
27	nicht identifizierte Subst.	28,38		27,40		16,62		38,79		48,48		
28	Summe	100,01		100,02		103,89		100,00	<u> </u>	100,01		
29	mittl. Molgewicht (g/mol)	375,00		260,00		230,00		139,00		174,00		
H	🔹 🕨 🔏 Graphik 🔏 Wertetabelle 🔏 SWR 🛛	GWN 🔏 Feldkap 🧳	(Äquival / Sto	offdaten 🔏 kd-A	norganik 🔏 ko	-Organik 🔏 Bio-	Abbau 🔏 Kon:	z-GW 🔏 Schads	toffmasse 🏑	MKW), Teeröl /	Prüfwerte //	GFS /

Abb. 21: Tabellenblatt *Teeröl* zur Abschätzung der Sättigungskonzentration für Teerölprodukte

A 3.4 Anwendung des Arbeitsblatts

Die Vorgehensweise bei der Anwendung von ALTEX-1D wird an Hand von Fallbeispielen demonstriert. Je nachdem, welches Freisetzungsverhalten für die Schadstoffquelle angenommen wird (vgl. Kap. 6.3.2 und A1.2.3), ist für die Fallkonstellation A (konstante Quellkonzentration) oder B (exponentiell abnehmende Quellkonzentration) jeweils das entsprechende Tabellenblatt *Fall A* oder *Fall B* zu verwenden. Zu beachten ist, dass eine Berechnung immer nur für einen Einzelstoff erfolgen kann. Im Falle von Stoffgemischen ist eine Einzelbetrachtung der relevanten Komponenten zu empfehlen.

A 3.4.1 Fallkonstellation A

Für die Beschreibung der Fallkonstellation A wurden folgende Beispiele ausgewählt:

Fallbeispiel 1:

Es handelt sich um ein Betriebsgelände, auf dem früher zink- und cadmiumhaltige Farbstoffe produziert wurden. In der oberflächennahen Bodenschicht wurden hohe Gehalte an Cadmium (durchschnittlich 476 mg/kg) und Zink festgestellt. Untersuchungen des Grundwassers unterhalb der kontaminierten Fläche ergaben deutlich erhöhte Konzentrationen von Cadmium und Zink. Die Transportbetrachtung wird für Cadmium durchgeführt.

Fallbeispiel 2:

Es handelt sich um ein ehemaliges Gaswerksgelände, auf dem in einer geringmächtigen Bodenschicht noch Reste von Steinkohlenteer in residualer Sättigung (19800 mg/kg) festgestellt wurden. Der Anteil von Naphthalin an der Teerphase beträgt aufgrund der Alterung nur noch 0,61 % (121 mg/kg). Untersuchungen des Grundwassers unterhalb der kontaminierten Fläche ergaben erhöhte Konzentrationen von Naphthalin und Phenanthren. Die Transportbetrachtung wird für Naphthalin durchgeführt.

Fallunterscheidung (Fallkonstellation A oder B)

Im ersten Schritt ist zunächst die Entscheidung zu treffen, welche Fallkonstellation vorliegt (s. o.). Im Fallbeispiel 1 liegen lösliche Cadmium- und Zinksalze vor. Daher wird ein lösungslimitiertes Freisetzungsverhalten mit konstanter Quellkonzentration (Fallkonstellation A) angenommen und das Tabellenblatt **Fall A** als Eingabeblatt durch Anklicken des entsprechenden Tabellenregisters (Registerfarbe wechselt beim Anklicken auf Weiß) ausgewählt (Abb. 22). Im Fallbeispiel 2 liegt die Kontamination als residuale Sättigung mit Teerphase vor. Auch hier wird lösungslimitiertes Freisetzungsverhalten mit konstanter Quellkonzentration angenommen (Tabellenblatt **Fall A**).

B i (Altex-1D_ver24.xls									
	A	В	С	D	E	F G H I J K L M				
1	Transportbetrachtung Fallko	Instellation A	Bearbeiter:	ALA-UA		Konzentrationsentwicklung Quelle				
2	konstante Quellkonzentratio	n	Projekt:	Fallbsp. 1/Basisfall AH	4	Co.				
3	gelbe Felder: Eingabefelder rote Schrift: berechnete Verte		Datum Bearbeit.: Version 2.4	10.02.10						
5	Kennwert/Parameter	Symbol	Einheit	Vert		1 <u> <u> </u> <u></u></u>				
6	Schadstoff	DV - 4 070		Cadmium						
8	Frurwert BBodSch¥ oder GFS Kontaminierte Fläche	F woder GFS	m²	5,00		c₀=c _{s1} (0)				
9	Ort der Beurteilung (u.GOK)	OdB	m	3,5						
10	Oberkante Quelle (u.GOK)	OKq	m	0,0						
11	Unterkante Quelle (u.GUK) Bodenart (KAS)	UKq	m	0,5 Su2						
13	Feldkapazitāt	FK	×	23,0						
14	Trockenraumdichte Quelle	pb-Q	kg/dm³	1,30		t _e :Emissionsdauer				
15	Trockenraumdichte Transportstr. Gesamtgehalt	pb-zs G	kg/dm² ma/ka TM	1,50		· · · · · · · · · · · · · · · · · · ·				
19	Gesamtmasse Quelle	Masage	kg	525,980		5 10 15 20 25 30				
20	Mobilisierbarer Anteil	Mast	Z	10,0		Zeit t (a)				
21	Quelikonzentration	0	µg/l	550,0		4				
23	Emissionsdauer	t,		225,0		1				
24	Quellstärke	Ja	mg/(m²*a)	137,5]				
25	Sickerwasserrate	SVR	mmła	250,0		4				
26	Lange Transportstrecke Sickerwassergeschw	Z.	m nda	3,0		-				
28	Schadstoffverweilzeit	t	а	56,8						
29	Dispersivitāts-Skalenfaktor	- Fa		0,100]				
30	long. Dispersivität	α.	m	0,3		4				
31	long. Disp.koeff. lin. Verteilungskoeff	D.	m*ra Uko	0,3		-				
33	Retardationsfaktor	B	пку	20,6						
34	Halbwertszeit Abbau	Tm	a	1000000,000						
35	Abbaukoeffizient Derechnung nach analytiech	λ or Löcung Μα	1/a on Convektori	0,000						
37	Derechnung nach analyusch	ier Lusuriy va		Charle Describerton						
70	Konzentrations- und Frachte	erechnung ar	n Oab	Start Berechnung						
72	max. Konzentration	Cmax	μg/l	549,9		-				
73	Zeitpunkt der max. Konz.	Lemax	a	236,0		4				
74	Zeitpunkt PW-Uberschr.	t _{ρwü}	а	21,0		4				
75	Zeitpunkt PW-Unterschr.	t _{pwu}	а	376,0		4				
76	Dauer PW-Uberschr.	t _{pw}	а	355,0		4				
77	Schadstoffemission Quelle	E _{s1ges}	kg	52,598		4				
78	Schadstoffemission GW	E _{s2ges}	kg	52,548		4				
79	max. Fracht GW	E _{s2max}	g/a	233,707						
80	mittl. Fracht GW	E _{s2mittel}	g/a	148,024						
81	max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	137,5						
82	mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	87,1						
83	mobilisierbare Masse	M _{mob}	kg	52,598						
84	Abbruchkriterium		Ť			1				
85						4				
86	Abbruchkriterium 1: keine Ur	nterschreitung	t des PW im Be	rechnungszeitraum (r	nax, 300000 a)					
H ·	Fall A Fall B Graphik	Wertetabelle	SWR_GWN / Feld	lkap / Äquival / Stoffdate	n 🔏 kd-Anorganik 🔏 kd-	- Organik <u>/</u> Bio-Abbau / Konz-GW / Schadstoffmasse //MKW / Teeröl / Prüfwerte //GFS /				

Abb. 22: Tabellenblatt Fall A für die Fallbeispiele 1 und 2

Tabellenblatt Fall A anklicken

A 3.4.1.1 Dateneingabe Fall A

In den Tabellenblättern sind für die Eingabe der Parameter ausschließlich die gelb markierten Felder vorgesehen. Die restlichen Felder der Blätter sind gesperrt. Felder mit roter Schrift enthalten berechnete Zwischenergebnisse, die im weiteren Berechnungsverlauf benötigt werden und zur Information des Anwenders dienen. Bei der Eingabe ist darauf zu achten, dass die Zahlenwerte jeweils den in Spalte C vorgegebenen Einheiten entsprechen! In den Zellen D1 und D2 können der Name des Bearbeiters und ein Projektname eingegeben werden. In Zelle D3 wird das aktuelle Bearbeitungsdatum, in Zelle C4 die Versionsnummer angezeigt.

Die Dateneingabe ist für die Fallbeispiele 1 und 2 in Tabelle 1 detailliert beschrieben.

Zelle	Parameterbeschreibung und	Beispiel 1	Beispiel 2
	Textbezug zur Arbeitshilfe	Dateneingabe	Dateneingabe
D6	Zu betrachtender Schadstoff , s. Kap. 7.3.2. Es ist zu beachten, dass eine Berechnung immer nur für einen Einzelstoff erfolgen kann.	Cadmium	Naphthalin
D7	Prüfwert nach Anhang 2 Nr. 3.1 BBodSchV (falls kein Prüfwert oder GFS vorliegt, ist aus pro- grammtechn. Gründen ein numerischer Ersatzwert einzugeben, z. B. 0,01).	5	2
D8	Als Kontaminierte Fläche ist die Größe der Emis- sionsfläche entsprechend Kap. 6.2, Gl. (3) einzu- setzen.	1700	400
D9	Als Ort der Beurteilung (OdB) ist nach Kap. 5.2 für den Standort ein mittlerer Grundwasserhöchst- stand einzusetzen.	3,5	5
D10	Oberkante der Quelle (Kap. 6.2).	0	1,2
D11	Die Unterkante der Quelle bestimmt zusammen mit dem Ort der Beurteilung die Länge der Trans- portstrecke in D26 (s. a. Kap. 6.2).	0,5	1,8
D12	Bodenart (KA5) Hier ist die Bodenart mit den in Tab. 70 der KA5 aufgeführten Kurzzeichen einzugeben. Alternativ kann die Schichtbezeichnung nach EN ISO 14688/89 (DIN 4022) eingegeben werden. Bei mehrschichtigen Profilen können auch mehrere Kurzzeichen eingegeben werden. Das Feld ist nur informativ, es wird nicht als Bezug in den weiteren Berechnungen benötigt	Su2	Su3

Tab. 1: Dateneingabe für die Fallbeispiele 1 und 2

Zelle	Parameterbeschreibung und	Beispiel 1	Beispiel 2
	Textbezug zur Arbeitshilfe	Dateneingabe	Dateneingabe
D13	Feldkapazität (Kap. 5.2). Das Modell geht von einem einschichtigen homo- genen Aufbau der Transportstrecke aus. Es ist daher ein mittlerer Wert für die Bodenkennwerte der Transportstrecke einzugeben. Der Wert kann aus dem Tabellenblatt <i>Feldkap</i> entnommen wer- den (s. Abb. 23). Bei mehrschichtigen Profilen ist hier der entsprechende äquivalente Wert aus dem Tabellenblatt <i>Äquival</i> einzusetzen. (s. Kap. A3.4.3)	23	26
D14	Die Trockenraumdichte der Quelle wird für die Berechnung der Gesamtschadstoffmasse der Quelle (D19) benötigt und ist aus Untersuchungs- ergebnissen abzuleiten.	1,3	1,2
D15	Die Trockenraumdichte der Transportstrecke wird für die Berechnung des Retardationsfaktors (D33) benötigt und wird mit Laboruntersuchungen ermittelt oder aus der Bodenart geschätzt (KA5). Bei mehrschichtigen Profilen ist hier der entspre- chende äquivalente Wert aus dem Tabellenblatt <i>Äquival</i> einzusetzen (Kap. A3.4.3)	1,5	1,6
D18	Schadstoffgesamtgehalt (Kap. 6.2). Im Beispiel 2 beträgt der Teerölgehalt 19800 mg/kg, und der Naphthalin-Anteil beträgt 121 mg/kg entsprechend 0,61 Gew%.	476	121
D20	Der mobilisierbare Anteil stellt den durch Nie- derschlagswasser freisetzbaren Anteil des Ge- samtgehaltes dar und ist vorzugsweise aus Eluti- onsversuchen abzuschätzen (Kap. 6.3.2 und A 1.2.3). Der Wert für den mobilisierbaren Anteil bestimmt maßgeblich die Emissionsdauer in D23 und hat daher großen Einfluss auf das Ergebnis der Berechnung. Im Beispiel 1 beträgt der mobili- sierbare Anteil nur 10%, da das meiste Cadmium in nicht wasserlöslicher, mineralischer Form ge- bunden ist. Im Fallbeispiel 2 wurde aufgrund der residualen Teerphase angenommen, dass 100% des Naphthalin-Gehaltes mobilisierbar sind.	10	100

Zelle	Parameterbeschreibung und	Beispiel 1	Beispiel 2
	Textbezug zur Arbeitshilfe	Dateneingabe	Dateneingabe
D21	Bei der Quellkonzentration ist die Schadstoffkon- zentration im Sickerwasser der Quelle entspre- chend Kap. 6.3.1 einzusetzen. Sie wird für die Fallkonstellation A als konstant über die Lebens- dauer der Quelle angenommen (s. Prinzipskizze im Tabellenblatt). Im Falle residualer Phase kann hilfsweise (wenn keine Daten aus Elutionsversu- chen zur Verfügung stehen) die Sättigungskon- zentration der Einzelstoffe im jeweiligen Stoffge- misch als Quellkonzentration herangezogen wer- den. Zur Abschätzung der Sättigungskonzentrati- onen können die Tabellenblätter <i>MKW</i> und <i>Teeröl</i> verwendet werden. Im Fallbeispiel 2 kann aus dem Tabellenblatt <i>Teeröl</i> für Steinkohlenteer bei einem Anteil von 0,61 Gew% (Eingabe in Spalte F9) eine Sättigungskonzentration von 1480 µg/l entnommen werden.	550	1480
D22	Die Vorbelastung der Transportstrecke berück- sichtigt eine zu Beginn in der Transportstrecke vorhandene Vorbelastung bspw. aufgrund geogen erhöhter Hintergrundwerte oder einer bereits vor- handenen Kontamination. Einzugeben ist der Wert der Sickerwasserkonzentration, der im Sorpti- onsgleichgewicht mit den entsprechenden Fest- stoffgehalten steht.	0	0
D25	Die nach Kap. 7.2.1 und A 2.1 ermittelte Sicker- wasserrate (SWR) wird als konstant (entspricht einer mittleren jährlichen Rate) über die gesamte Zeitdauer der Prognose angenommen. Bei Fällen, in denen es z. B. durch Nutzungsänderungen zu einer Veränderung der SWR kommen kann, wird empfohlen, Berechnungen mit unterschiedlichen SWR durchzuführen. Hilfsweise kann für die Ab- schätzung der SWR auch das Tabellenblatt <i>SWR_GWN</i> herangezogen werden.	250	285

Zelle	Parameterbeschreibung und Textbezug zur Arbeitshilfe	Beispiel 1 Dateneingabe	Beispiel 2 Dateneingabe
D29	Der Dispersivitäts-Skalenfaktor dient zur Be- rechnung der longitudinalen Dispersivität (D30) und des longitudinalen Dispersivitätskoeffizienten (D31) entsprechend Kap. 7.3.3 und A 2.3. Insbe- sondere bei langen Transportstrecken (>10 m) ist ggf. eine Reduzierung des Faktors zu empfehlen. Beispiele, wie sich die Änderung des Dispersivi- täts-Skalenfaktors auswirkt, sind in Kap. A 3.5 gegeben. Bei leichtflüchtigen Stoffen ist hier der entsprechende äquivalente Wert aus dem Tabel- lenblatt <i>Äquival</i> einzusetzen [42] (Kap. A2.3 und Kap. A 3.4.3,).	0,1	0,1
D32	Der lineare Verteilungskoeffizient k _d dient zur Berechnung des Retardationsfaktors in D33 (Kap. 7.3.3 und A 2.4) und hat großen Einfluss auf das Ergebnis der Berechnung. Liegen keine Ergebnis- se aus Laboruntersuchungen vor, können die Ta- bellenblätter <i>kd-Anorganik</i> und <i>kd-Organik</i> als Orientierung zur Abschätzung des k _d -Wertes he- rangezogen werden (s. u.). Bei mehrschichtigen Profilen oder der Be- rücksichtigung der Flüchtigkeit ist hier der ent- sprechende äquivalente Wert aus dem Tabellen- blatt <i>Äquival</i> einzusetzen (s. Kap. A 3.4.3).	3,0	1,837
D34	Die Halbwertszeit Abbau (Kap. 7.3.3 und A2.5) wird zur Berechnung des Abbaukoeffizienten in D35 benötigt. Hierbei wird eine Abbaukinetik 1. Ordnung angenommen. Für nicht abbaubare Stoffe ist aus programmtechnischen Gründen ein Wert von 1.000.000 einzusetzen. Hieraus resultiert ein praktisch vernachlässigbarer Abbaukoeffizient. Liegen keine Ergebnisse aus Laboruntersuchun- gen vor, kann das Tabellenblatt <i>Bio-Abbau</i> als Orientierung zur Abschätzung der Halbwertszeit herangezogen werden (s. u.).	1.000.000	1,24

Ermittlung der Feldkapazität (Zelle D13)

Mit dem Tabellenblatt *Feldkap* (Abb. 23) können die Parameter Feldkapazität und Luftkapazität für die in der KA5 (dort Tab. 70) vorhandenen Bodenarten berechnet werden. Einzugeben sind die Trockenrohdichte, der Grobbodenanteil und der Humusgehalt. Die Zuschläge bei erhöhten Grobbodengehalten oder erhöhtem Humusgehalt werden berücksichtigt.

	A	В	С	D	G		J	K	L	
1	Feld/Luft-Kar	azität nach	KA 4/5							
1	Version 24									
2	Version 2.4		- n Dl≌#- m Call A b	F -II P	-1-1/-1					
3	Die Eingabe der Fe	lakapazitat in a	en blattern Fall A b	zw. Fall B erfolgt	als volumenant	ten in %.				
4	Sie entspricht der V	Wassermenge, d	lie in Poren mit eine	em Aquivalentdur	chmesser von S	u mm (entspred	chend einer S	saugspannur	igp⊦	
5	> 1,8, fur Reinsand	e >2,5) gebunde	n ist.							
6	Die Feldkapazität i	st neben der Bo	denart von der Troc	kenrohdichte ab	hängig. Es ist di	e Klasseneinte	ilung nach Ta	ab. 21/KA 5 z	ugrunde gelo	egt.
7	Bei Böden mit Grol	bodenanteil wi	rd die Feldkapazitä	t entspr. KA4/S. 2	95 mit dem Korr	ekturfaktor (10)-Vol.% Grobl	bodenanteil)	(100	
8	entsprechend dem	Volumenanteil	des Grobbodens rec	luziert.						
9	Bei Böden mit orga	nischem Gehalt	t wird die Feldkapa:	zität um einen Zu	schlag entspreci	hend Tab. 72/K	A 5 erhöht.			
10	Der Zuschlag ist ab	hängig vom Hur	nusgehalt, es ist die	e Klasseneinteilur	ig nach Tab. 15/	KA 5 zugrunde	gelegt.			
11										
12	gelbe Felder: Einga	abefelder (mit V	orgabewerten)							
13	grüne Felder: Bode	enarten nach KA	5							
14	rote Schrift: berech	inete Werte								
15										
16	Bodenart	Trocken-	Grobboden-	Humusgehalt	Feldkapazität	Luftkapazität				
17		rohdichte	Anteil							
18		pt	Korngröße>2 mm		n. Tab. 70	n. Tab. 70				
19		(ka/dm ³)	(Vol %)	(Masse %)	(Vol %)	(Vol %)				
20	Ss	15	0	0	11	32				-
21	SI2	15	0 0	0 0	25	18				-
22	SI3	15	Ū Ū	Ő	27	15				-
23	515	15	ů	Ő	30	12	Maria C		·	
24	Shi	1.5	Ő	ő	33	10	vverte fi	ur Failbe	Ispiel 1	
25	St2	1,5	Ő	ů	22					
26	St3	15	0	0	30	14				-
20	513 Su2	1,5	0	0	23	21				-
28	5u2 Su3	1,5	0	0	29	14				
29	Su4	15	ů	Ő	32	11				
30	1e7	1,5	ů n	ů n	34	9				-
31	L-32 e3	1,5	ů n	ů n	33	ğ				-
32	L35	15	ů	Ő	32	11				
33	L t2	15	Ő	ñ	36	7				
34	113	15	ů.	ñ	39	5				-
35	L to	15	ñ	ň	37	6				-
36	10	15	n n	0	36	7				
37	Lu Uu	1.5	ñ	0	38	7				-
38	Ills	15	ñ	ň	35	8				-
39	lle	1,5	ő	ő	35	ğ				
40	11+2	1.5	ů Ú	ñ	37	6				
41	Ut3	15	0	0	37	6				-
42	Ut/	15	0	0	37	7				-
43	Tt	15	0	0 D	43	3				-
40	Т	1.5	0	0	41	A				-
45	Tu2	15	0	0	42	A				-
45	Tu3	1.5	0	0	38	A A				-
40	Tu3	1.5	0	0	37	6				-
47	Te2	1.5	0	0	30	4				-
19	Te3	1.5	0	0	37	A A				-
40	Te4	1.5	0	0	32	10				-
51	Sando				JL	10				-
51	fe feme fear	1.5	0	0	14	24				-
52	ms msta ms a	1,5	0	0	14	31				-
00 EA	mə, məis, məgs	1,5	0	0	10	32				-
54	yə	- I''D	0	0	0					
20						labelle	nblatt Fe	eldkap a	anklicken	1
H 4	🕩 🕅 <mark> Fall A Fall B </mark>	Graphik 🔏 Werteta	abelle SWR_GWN Fe	l idkap / Aquival / St	offdaten 🔏 kd-Ano	rganik 🔏 kd-Orga	nik 🔏 Bio-Abbau	⊢ <u>∕</u> Konz-GW ∕	Schadstoffmass	se /

Abb. 23: Ermittlung der Feldkapazität in Fallbeispiel 1 mit Hilfe des Tabellenblatts Feldkap

Ermittlung des linearen Verteilungskoeffizienten k_d (Zelle D32)

a) Anorganische Stoffe (Fallbeispiel 1)

Liegen keine standortspezifischen Ergebnisse aus Laboruntersuchungen (Sorptionsisothermen) vor, kann das Tabellenblatt *kd-Anorganik* für eine orientierende Abschätzung herangezogen werden (Abb. 24).

	A	В	C	D	E	F	G	Н		J	L	N	0	Q	S
1	kd-Wert	e And	organik												
2								wichtiger H	inweis:	Die Werte	sind als	s Orientierung	gedacht,		
3	gelbe Felde	r: Eing	abefelder			2		sofern kein	e stand	ortspezifis	schen W	erte aus Labo	r-/Feldunte	rsuchungen	vorliegen
4	grüne Felde	er: Regr	essionskoeffi	zienten B	ericht BGR	/2005 [6]									
5	rote Schrift:	berech	inete Werte												
6	Freundlic	h-Mod	ell : c _s =K _{d.}	r*c ⁿ			_	Die kd Werte	in dan ra	t markiartan	7allan ei	nd in don Taball	rn Fa nhlätto rn Fa	II A bzw Fall B	einzusetzen
7	log K _{d.fr} =log	K [*] +a*1	H+b*log Ton	+c*log Cor	0		E	Eingabe	wert	e für F	allbe	ispiel 1			
8	Verwendu	ing su	bstratüber	greifend	。 er Sorpti	onsisothe	rmen n. Be	richt BGR/2	005 [6]		Τ			lin. kd-\	Nert
9													L		
10			Freundlich-	Regression	nskoeffizie	nten (Berich	t BGR/2005)		Bodenke	nngrößen			Linear. Freu	ndlich-Isoth.	
11	Element	Sym	Tab. BGR	log K*	a (pH)	b (log Ton)	c (log Corg)	n-Freundlich	pН	Corg	Ton	K _d -Freundlich	¹ c _{si} (=Quellk.	k _d -linearisiert	
12										(%)	(%)	(ua ⁽¹⁻ⁿ⁾ 4 ⁿ /ka)	jug/l	(l/kg)	
13	Cadmium	Cd	Tab. 3.2-6	-0,827	0,521	0,419	0,376	0,836	4,0	0,10	1,0	7,6	500,0	3,0	
14	Chrom	Cr	Tab. 3.2-6	3,09		20 52		0,799	6,0	0,10	10,0	1230,3	500,0	391,4	
15	Kupfer	Cu	Tab. 3.2-6	0,764	0,332	0,41		0,758	6,0	0,10	10,0	1465,5	500,0	369,6	
16	Molybdän	Mo	Tab. 3.2-11	5,309	-0,663	0,732		0,628	6,0	0,10	10,0	115,6	500,0	14,0	
17	Nickel	Ni	Tab. 3.2-6	-0,122	0,365	0,473	0,226	0,761	6,0	0,10	10,0	206,5	500,0	53,0	
18	Blei	Pb	Tab. 3.2-11	1,231	0,432	0,465	0.000	0,61	6,0	0,10	10,0	19408,9	250,0	2/83,5	
19	Antimon	Sb	Tab. 3.2-6	2,593	-0,333	U,//b	-0,292	0,846	6,U	0,10	10,0	4b,U	100,0	24,5	
20	Thainum Zink	11 7n	Tab. 3.2-11	0,718	0,216	0,729	0.27	0,657	0,0 0,2	0,10	10,0	1003,4	5000.0	427,1	
21	ZIIIK	211	100. 3.2-0	0,240	0,400	0,001	0,27	0,070	0,0	0,10	0,01	1244,0	1Verseheurert	4Z,1	
122													vorgabewert	. IU FW	

Abb. 24: Ermittlung des k_d-Wertes in Fallbeispiel 1 mit Hilfe des Tabellenblatts *kd-Anorganik* auf der Grundlage von Pedotransferfunktionen

Eingaben sind ausschließlich in den gelb markierten Feldern möglich. Die restlichen Felder sind gesperrt. Das Tabellenblatt berechnet nach Eingabe der Bodenkenngrößen **pH-Wert**, **C**_{org}-**Gehalt** und **Tongehalt** (gelb markierte Felder in den Spalten I bis L) den Freundlich-Koeffizienten K_d -Freundlich (Spalte N). Die Bodenkenngrößen müssen aus der Beschreibung der Transportstrecke (Kap. 5.2) abgeleitet werden. Für das Fallbeispiel 1 wurde ein pH-Wert von 4, ein C_{org}-Gehalt von 0,1 % und ein Tongehalt von 1 % eingesetzt (Abb. 24). Grundlage der Berechnung des Freundlich-Koeffizienten sind die in der Tabelle hinterlegten Regressionskoeffizienten, die aus substratübergreifenden Sorptionsisothermen im Rahmen des BMBF-Förderschwerpunkts "Sickerwasserprognose" abgeleitet wurden [6]/Anhang 2.

Für eine weitere Verwendung in den Tabellenblättern *Fall A* und *Fall B* ist zunächst die Linearisierung des Freundlich-Koeffizienten nach Kap. A 2.4, Gleichung (A15) der AH-DU erforderlich. Hierfür sind die Spalten O - Q vorgesehen. Für die Linearisierung muss ein Konzentrationsbereich ausgewählt werden. Als Obergrenze (Spalte O, gelbe Markierung) ist i. d. R. die Quellkonzentration heranzuziehen. Da die Sorptionsisothermen nur für einen begrenzten Konzentrationsbereich Gültigkeit haben, ist im Tabellenblatt als Vorgabewert der jeweils 10fache Prüfwert eingetragen. Im Beispiel 1 liegt die Quellkonzentration etwa um den Faktor 100 über dem Prüfwert. **Je höher die Obergrenze für die Linearisierung gewählt wird, desto geringer ist der resultierende lineare k_d-Wert.** Bei Annahme der Quellkonzentration liegt man daher i. d. R. auf der sicheren Seite. Als Untergrenze der Linearisierung wird der halbe Prüfwert (Spalte P) verwendet. Der linearisierte k_d-Wert (Q13) für Beispiel 1 beträgt 3,0 l/kg und wird als Eingabewert für Zelle D32 im Tabellenblatt *Fall A* verwendet. Eine Überprüfung mit einem numerischen Modell bestätigte, dass die so praktizierte Linearisierung der Freundlich-Isotherme ein Ergebnis auf der sicheren Seite ergibt (s. Kap. A3.6.3).

Für diejenigen Elemente, für die keine Pedotransferfunktionen zur Berechnung der Freundlich-Parameter zur Verfügung stehen, kann ein linearer k_d -Wert nach dem Ansatz von van den Berg & Roels [13]/Anhang 2 abgeschätzt werden (Abb. 25).

25	Abschätzung	j lineare	r Verteilun	gskoeffizi	enten nach	van den Be	rg & Roels ('	1991) Ei	ingabe	werte fü	ir Fallb	eispiel 1	
26										/		lin kWort	
27					Regressio	nskoeffizien	ten		Bodenke	nngrößen			
28	Element	Sym							pН	Corg	Ton		\Box
29				Co	C1	C2	C3	C4		(%)	(%)	(l/kg)	7
30	Arsen	As		349	942	9,42	1,79	-0,16	6,0	0,10	10,0	634,893	\boldsymbol{V}
31	Blei	Pb		0,0008	0,002	0	2,85	-0,17	6,0	0,10	10,0	1432,489	
32	Cadmium	Cd		2408	4309	129,26	0,57	0	4,0	0,10	1,0	7,006 🕨	
33	Chrom	Cr		15,18	61,14	0	2,51	-0,21	6,0	0,10	10,0	10100,631	
34	Kupfer	Cu		2168	8673	86,73	1,36	-0,12	6,0	0,10	10,0	314,996	
35	Nickel	Ni		42465	424650	0	0,4	0	6,0	0,00	10,0	320,002	
36	Quecksilber	Hg		0,00089	0,0024	0,0055	2,82	-0,163	6,0	0,10	10,0	1919,899	
37	Zink	Zn		130	598	2,99	0,89	-0,02	6,0	0,10	10,0	118,685	
38	Zinn	Sn		0	14367	431	1,03	-0,08	6,0	0,10	10,0	43,012	
39							÷						à
40									1				

Abb. 25: Ermittlung des k_d-Wertes in Fallbeispiel 1 mit Hilfe des Tabellenblatts *kd-Anorganik* nach dem Ansatz von van den Berg & Roels

Für die Bodenkennwerte des Fallbeispieles 1 würde sich nach dem Ansatz von van den Berg & Roels für Cadmium ein linearer k_d -Wert von 7 l/kg ergeben. Im Vergleich dazu liegt der über die Pedotransferfunktion ermittelte Wert von 3,0 l/kg deutlich niedriger. Um ein Ergebnis auf der sicheren Seite zu bekommen, ist der geringere Wert vorzuziehen.

b) Organische Stoffe (Fallbeispiel 2)

Für organische Stoffe kann der k_d -Wert i. d. R. mit ausreichender Genauigkeit über das Tabellenblatt **kd-Organik** (Abb. 26) abgeschätzt werden. Eingaben sind ausschließlich in den gelb markierten Feldern möglich. Das Tabellenblatt berechnet nach Eingabe der Bodenkenngröße **C**_{org}-**Gehalt** (gelb markiertes Feld, Spalte B) den k_d -Wert auf der Grundlage einer linearen Sorptionsisotherme (Kap. A2.4, Gleichung A16). Der stoffspezifische K_{oc}-Wert wird aus dem Tabellenblatt **Stoffdaten** übernommen und stammt aus der Datenbank EPI-Suite der US-EPA (PCKOCWIN V. 1.66) [48]. Der berechnete k_d -Wert in Spalte C (rot markiert) wird als Eingabewert für Zelle D32 im Eingabeblatt *Fall A* verwendet.

	A		В		С	D		
1	kd-Werte Organik							
2								
3	gelbe Felder: Eingabefeld	er			2			
4	der k _{oc} -Wert wird aus dem	Tabelle	enblatt '	Sto	ffdaten" i	ibernomm	en	
5								
6	lineares Sorptionsmo	dell: c _s	=k _d *c _w					
7	k _d = C _{org} *K _{oc}							
8		pewert fü	ir F	allbeispiel	1	-		
9								
10	Stoff		Corg		k _d			
11	Gruppe/Name		(%)		(l/kg)			
12	2.14						lin, k _d -Wer	rt
82	PAK		0.4		0.005			
84	Nanhthalin		¥		1 837			
85	Ivernvinaphtnaun		0,1		3.041			
86	Dimethylnaphthalin		0,1		5.023			
87	Acenaphthylen		0,1		6,124			
88	Acenaphthen		0,1		6,124			
89	Fluoren		0,1		11,298			
90	Phenanthren		0,1		20,845			
91	Anthracen		0,1		20,417			
92	Fluoranthen		0,1		70,795			
93	Pyren Ronzo(o)onthrocon		0,1		69,343 221 206		<u></u>	
95	Chrysen		0,1		236 048			
96	Benzo(a)pyren		0.1		787.046			
97	Benzo(b)fluoranthen		0,1		803,526		5.0	
98	Benzo(k)fluoranthen		0,1		787,046			
99	Benzo(ghi)perylen		0,1		2679,168			
100	Dibenzo(a,h)anthracen		0,1		2624,219			
101	Indeno(123-cd)pyren		0,1		2679,168	_	-	
102			- 18 A.					

Abb. 26: Ermittlung des k_d-Wertes in Fallbeispiel 2 mit Hilfe des Tabellenblatts kd-Organik

Ermittlung der Halbwertszeit (Zelle D34)

Liegen keine standortspezifischen Ergebnisse aus Laboruntersuchungen vor, kann das Tabellenblatt Bio-Abbau (Abb. 27) als Orientierung zur Abschätzung der Halbwertszeit herangezogen werden. Aufgrund der erheblichen Schwankungsbreite der international veröffentlichten Daten zu Halbwertszeiten sind neben den BIOWIN-Daten (aus der Datenbank EPI-Suite der US-EPA [48]) noch Daten aus dem Kompartiment-Modell "CalTox" [50] (ein 7-Kompartiment-Modell auf Excel-Basis zur Simulation der Schadstoffausbreitung in unterschiedlichen Kompartimenten) angegeben, um eine möglichst große Spannweite abzudecken. Die BIOWIN-Halbwertszeiten wurden über eine Regression [52] aus den BIOWIN3- und BIOWIN4-Werten errechnet. Die BIOWIN3-Halbwertszeit (Ultimate) berücksichtigt die Zeit für den kompletten Abbau bis zum CO2 während die BIOWIN4-Halbwertszeit (Primary) nur die Zeit für den ersten Abbauschritt angibt. "CalTox" enthält Halbwertszeiten, die für unterschiedliche Kompartimente repräsentativ sind. Allerdings liegen nicht für alle relevanten organischen Stoffe Werte vor. Wegen des erheblichen Einflusses auf das Ergebnis ist eine kritische Anwendung der Literaturwerte wichtig! Um in Zweifelsfällen auf der sicheren Seite zu liegen, sollte eher ein höherer Wert angenommen oder ein Abbau gar nicht berücksichtigt werden (programmtechnisch erforderliche Angabe in diesem Fall: Halbwertszeit 1.000.000 Jahre). Für Naphthalin ergibt sich eine Spannweite der Datenbank-Werte zwischen 0,032 und 1,244 Jahren. Als Eingabewert wird der konservative Wert von 1,244 Jahren verwendet.

	A	D	E	G		K K	M	0	Р
1	Halbwertszeiten für or	ganische	Schadst	offe					
2	Abbau 1. Ordnung								
3	Ű			Ultimate Wert	: kompletter Al	bau bis CO2			
4	Datenguellen			Primary Wert:	nur erster Ab	bauschritt			
5	Epi-Suite/US-EPA								
6	CalTox	wichtiger	Hinweis:	Die Halbwei	tszeiten sin	d als Orienti	erung gedac	ht,	
7		sofern ke	ine stand	ortspezifiscl	nen Werte au	is Labor-/Fe	Iduntersuch	ungen vo	rliegen
8									
9	Stoff	Biowin 3	Biowin 4	CalTox	CalTox	CalTox	CalTox	CalTox	
10		Ultimate	Primary	Oberboden	Wurzelzone	unges. Zone	Grundwasser	Sediment	
11	Gruppe/Name	HWZ	HWZ	HWZ	HWZ	HWZ	HWZ	HWZ	
12		(a)	(a)	(a)	(a)	(a)	(a)	(a)	
80	Dichlorbrommethan	0,151	0,025	-	-	-	-	-	
81									
82	РАК								
83	Inden	0.077	0.018	-	-	-	-	-	
84	Naphthalin	0,217	0,032	1,244	1,244	0,356	0,356	0,353	
85	1-Methylnaphthalin	0,086	0,020		-		-8		
86	1,4-Dimethylnaphthalin	0,106	0,023	-	-		-2	-	
87	Acenaphthylen	0,078	0,018	-	-	Hara Ha	albwertsze	eit für	
88	Acenaphthen	0,105	0,023	0,156	0,156	0,59 N	aphthalin.	Beispiel	2
89	Fluoren	0,095	0,021	0,122	0,122	0,41	apricialit,	Delepier	-
90	Phenanthren	0,269	0,037	15.					
91	Anthracen	0,269	0,037	1,556	1,556	2,658	1,397	2,589	
92	Fluoranthen	0,450	0,079	2,334	2,334	2,795	1,589	2,603	
93	Pyren	0,450	0,079	2,767	2,767	10,986	5,781	10,712	
94	Benzo(a)anthracen	0,503	0,085	2,405	2,405	4,000	2,142	3,863	
95	Chrysen	0,503	0,085	1,159	1,159	6,521	3,753	6,000	
96	Benzo(a)pyren	0.557	0.091	0.627	0.627	2,411	2.411	3.205	

Abb. 27: Ermittlung der Halbwertszeit in Fallbeispiel 2 mit Hilfe des Tabellenblatts *Bio-Abbau*

A 3.4.1.2 Berechnung der Ergebnis-Kenngrößen

Das Makro zur Berechnung wird durch Anklicken der Schaltfläche "*Start Berechnung"* in der Zelle D70 (Abb. 28) gestartet. Damit werden die Konzentrations- und Frachtentwicklung am Ort der Beurteilung in Jahresschritten berechnet und die Werte im Tabellenblatt *Wertetabelle* (Abb. 8) abgelegt. Mit den Werten wird automatisiert eine graphische Darstellung des Konzentrationsverlaufs erzeugt und im Tabellenblatt *Graphik* angezeigt (für Fallbeispiel 1 s. Abb. 7). Die Berechnung kehrt am Ende zur Anzeige der in Kap. 8.2 der AH-DU beschriebenen Ergebnis-Kenngrößen in das Tabellenblatt *Fall A* zurück. Bei langen Transportstrecken und Emissionszeiträumen kann die Berechnung einige Minuten in Anspruch nehmen. Die Berechnung läuft, solange das Sanduhr-Symbol auf dem Bildschirm sichtbar ist. Zur Betrachtung der Graphik und der Wertetabelle müssen die entsprechenden Tabellenblätter angeklickt werden.

37	Berechnung nach analytische	er Lösung "va	n Genuchten"				
70	Konzentrations- und Frachtb	erechnung am	n OdB	Start Berechnung			
72	max. Konzentration	c _{max}	μ g/ Ι	549,9	$\left \right $	Schaltfläche	
73	Zeitpunkt der max. Konz. t _{cmax}		а	236,0		anklicken	
74	Zeitpunkt PW-Überschr.	t _{pwü}	а	21,0			
75	Zeitpunkt PW-Unterschr.	t _{pwu}	а	376,0			
76	Dauer PW-Überschr.	t _{pw}	a	355,0			
77	Schadstoffemission Quelle	E _{s1ges}	kg	52,598			
78	Schadstoffemission GW	E _{s2ges}	kg	52,548			
79	max. Fracht GW	E _{s2max}	g/a	233,707			
80	mittl. Fracht GW	E _{s2mittel}	g/a	148,024			
81	max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	137,5			
82	mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	87,1			
83	mobilisierbare Masse	M _{mob}	kg	52,598			
84	Abbruchkriterium						
85							

86

87 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum (max. 300000 a)

Abb. 28: Start der Berechnung und berechnete Kenngrößen für Fallbeispiel 1

Die Berechnung des gesamten Schadstoffeintrags in das Grundwasser erfolgt durch Integration der jährlichen Frachten für die Zeitdauer der Prüfwertüberschreitung. Die berechnete mittlere jährliche Fracht ist der Quotient aus dem gesamten Schadstoffeintrag und der Zeitdauer der Prüfwertüberschreitung.

Falls im Prognosezeitraum keine Überschreitung des Prüfwertes erfolgt, wird dies in den entsprechenden Feldern durch eine Textinformation (Abb. 29) angezeigt. Eine Berechnung von Frachten wird in diesem Falle nicht durchgeführt.

37	Berechnung nach analytische	er Lösung "va	n Genuchten"		
70	Konzentrations- und Frachtb	erechnung am	n OdB	Start Berechnung	
72	max. Konzentration	c _{max}	μ g/l	2,3	
73	Zeitpunkt der max. Konz.	t _{cmax}	а	54,0	
74	Zeitpunkt PW-Überschr.	t _{pwü}	а	-	keine PW-Ü.
75	Zeitpunkt PW-Unterschr.	t _{pwu}	а	-	keine PW-Ü.
76	Dauer PW-Überschr.	t _{pw}	а	0,0	
77	Schadstoffemission Quelle	E _{s1ges}	kg	0,055	
78	Schadstoffemission GW	E _{s2ges}	kg	-	keine Berech.
79	max. Fracht GW	E _{s2max}	g/a	-	keine Berech.
80	mittl. Fracht GW	E _{s2mittel}	g/a	-	keine Berech.
81	max. Emissionsstärke GW	J_{s2max}	mg/(m ² *a)	-	keine Berech.
82	mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	-	keine Berech.
83	mobilisierbare Masse	M _{mob}	kg	0,055	
84	Abbruchkriterium				

Abb. 29: Ergebnis-Darstellung für den Fall, dass keine Überschreitung des Prüfwertes auftritt

In manchen Fällen kann sich rechnerisch eine extrem lange Dauer (> 10000 Jahre) des Berechnungszeitraumes ergeben. Im Fallbeispiel 1 (Abb. 30) tritt dies ein, wenn man den mobilisierbaren Anteil auf 100 % setzt und für die Quellkonzentration 10 µg/l eingibt (rechnerische Emissionsdauer: 123760 Jahre). In diesen Fällen bricht das Programm vor dem Erreichen der Prüfwertunterschreitung ab. Als Zeitpunkt der Prüfwertunterschreitung wird in diesem Falle der Abbruchszeitpunkt angegeben. Als Zeitdauer der Prüfwertüberschreitung wird der Zeitraum zwischen Prüfwertüberschreitung und Abbruch angegeben. Der gesamte Schadstoffeintrag und die mittlere Fracht werden für diesen Zeitraum angegeben. Als Hinweis auf den Grund des Abbruchs wird das Abbruchkriterium 1 (keine Unterschreitung des Prüfwertes im Berechnungszeitraum) ausgegeben.

37	Berechnung nach analytische	er Lösung "va	n Genuchten"		
70	Konzentrations- und Frachtb	erechnung am	n OdB	Start Berechnung	
72	max. Konzentration	c _{max}	μ g/ Ι	10,0	
73	Zeitpunkt der max. Konz.	t _{cmax}	а	431,0	
74	Zeitpunkt PW-Überschr.	t _{pwü}	а	56,0	
75	Zeitpunkt PW-Unterschr.	t _{pwu}	а	16846,0	Abbruch
76	Dauer PW-Überschr.	t _{pw}	а	16790,0	PW-Ü bis Abbruch
77	Schadstoffemission Quelle	E _{s1ges}	kg	71,596	bis Abbruch
78	Schadstoffemission GW	E _{s2ges}	kg	71,316	bis Abbruch
79	max. Fracht GW	E _{s2max}	g/a	4,250	
80	mittl. Fracht GW	E _{s2mittel}	g/a	4,248	PW-Ü bis Abbruch
81	max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	2,5	
82	mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	2,5	PW-Ü bis Abbruch
83	mobilisierbare Masse	M _{mob}	kg	525,980	
84	Abbruchkriterium				1
85	-				

87 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum

Abb. 30: Ergebnis-Darstellung für den Fall, dass ein vorzeitiger Abbruch der Berechnung aufgrund einer extrem langen Emissionsdauer auftritt

Die berechneten Kenngrößen für die Fallbeispiele 1 und 2 sind in Tabelle 2 zusammenfassend dargestellt.

Kenngröße	Symbol	Einheit	Fallbeispiel 1 Ergebnis	Fallbeispiel 2 Ergebnis
max. Konzentration	C _{max}	µg/l	549,9	310,6
Zeitpunkt der max. Konz.	t _{cmax}	а	236,0	209
Zeitpunkt PW-Überschr.	t _{pwü}	а	21,0	11
Zeitpunkt PW-Unterschr.	t _{pwu}	а	376	277
Zeitdauer PW-Überschr.	t _{pw}	а	355	266
Schadstoffemission Quelle	E _{s1ges}	kg	52,6	34,8
Schadstoffemission GW	E _{s2ges}	kg	52,5	7,3
max. Fracht GW	E _{s2max}	g/a	233,7	35,40
mittl. Fracht GW	E _{s2mittel}	g/a	148,0	27,5
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	137,5	88,5
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	87,1	68,7
mobilisierbare Masse	M _{mob}	kg	52,6	34,8

Tab.	2:	Eraebnis	-Kennaröß	en für o	die Fallb	peispiele 1	l und 2
				••••••			

In Kapitel A 3.5 wird dargestellt, wie sich Variationen von Eingabeparametern auf die berechneten Ergebnis-Kenngrößen auswirken.

ALTEX-1D ist standardmäßig für die Berechnung von Ergebnissen in Jahresschritten eingestellt. Hilfsweise kann auch eine Berechnung von Fällen mit Durchbruchszeiten unter einem Jahr in Tagesschritten (bspw. die Nachrechnung von Lysimeter- oder Säulenversuchen) erfolgen. Dafür muss die Sickerwasserrate in mm/d angegeben werden und bei den Ergebniskenngrößen die Einheit "Jahr" durch "Tag" ersetzt werden.

A 3.4.2 Fallkonstellation B

Für die Beschreibung der Fallkonstellation B wurde folgendes Beispiel ausgewählt:

Fallbeispiel 3:

Es handelt sich um das ehemalige Betriebsgelände eines Gummi- und Reifenwerkes. Auf dem Gelände wurden flächenhaft in rußhaltigen Auffüllungen PAK-Belastungen in der Größenordnung von 100 – 200 mg/kg festgestellt (Summe ohne Naphthalin, überwiegend Acenaphthen, Fluoren und Phenanthren). Untersuchungen des Grundwassers im Bereich der Auffüllungen zeigten Spuren von PAK. Die Transportbetrachtung wird für den Einzelstoff Acenaphthen durchgeführt.

Schritt 1: Fallunterscheidung (Fallkonstellation A oder B)

Im Fallbeispiel 3 liegen die PAK hauptsächlich sorptiv an die Rußpartikel gebunden vor. Es wird daher ein desorptionslimitiertes Freisetzungsverhalten angenommen. Aus Säulenversuchen wurde eine exponentiell abklingende Quellkonzentration abgeleitet

	A	В	C	D	E	F G H I J
1	Transportbetrachtung Fallkor	nstellation B	Bearbeiter:	ALA-UA		
2	exponentiell abnehmende Q	uellkonzentration	Projekt:	Fallbsp. 3/Basisfall AH		Konzentrationsentwicklung Quelle
3	gelbe Felder: Eingabefelder		Datum Bearbeit.:	17.2.10		
4	rote Schrift: berechnete Werte		Version 2.4			vv ,
5	Kennwert/Parameter	Symbol	Einheit	Wert	ber. Wert	
6	Schadstoff			Acenaphthen		$2 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$
7	Prüfwert BBodSchV/GFS	PW/GFS	µg/l	0,20		
8	Kontaminierte Fläche	F	m ²	1100,0		\mathfrak{P} $\mathfrak{C}_{\mathfrak{A}}(0)$ = initiale Quellkonzentration= $\mathfrak{C}_{\mathfrak{A}}+\mathfrak{C}_{\mathfrak{A}}$
9	OdB (u GOK)	OdB	m	4,5		
10	Oberkante Quelle	OKq	m	0,5		
11	Unterkante Quelle	UKq	m	0,7		
12	Bodenart (KA5)	51/	6/	SuZ		
13	Feldkapazitat	FK	%	23,0		
14	Irockenraumdichte Quelle	pb-Q	kg/dm°	1,30		c _a : asymptotische Endkonzentration
15	Trockenraumdichte Transportstr.	pb-zs	kg/dm°	1,70		
1/	Gesamtgehalt	6	mg/kg IM	85,000		t : Emissionsdauer
18	Gesamtmasse Quelle	M _{Sch,F}	kg	24,310		PW
19	Mobilisierbarer Anteil	M _{mob}	%	100,0		10
20	flächenbez. mob. Masse		g/m ²	22,100		Ca
21	Quellkonzentration initial	c _{s1} (0)	µg/l	750,0		
22	Vorbelastung Transportstrecke	G	µg/l	0,0		
23	asympt. Endkonzentration	Ca	µg/l	0,0		*7eitt(a)
24	Abklingkonstante	k,	1/a	8,484E-03	8,484E-03	(-)
25	Emissionsdauer Quelle	t _e	a	970,0		
26	Quellstärke initial	J _{s1} (0)	mg/(m ² *a)	187,5		
27	Sickerwasserrate	SWR	mm/a	250,0		
28	Länge Transportstrecke	Zs	m	3,8		
29	Sickerwassergeschw.	Vsm	m/a	1,087		
30	Schadstoffverweilzeit	t _{stm}	а	161,7		Tabellenblatt Fall B anklicken
31	Dispersivitäts-Skalenfaktor	fd		0,100		
32	long. Dispersivität	a _z	m	0,380		[
33	long. Disp.koeff.	Dz	m²/a	0,413		
35	lin. Verteilungskoeff.	k _d	l/kg	6,124		
36	Retardationsfaktor	R		46,3		
37	Halbwertszeit Abbau	1/2	а	0,592		
38	Abbaukoeff. 1	1	1/a	1,171]
н	🖚 🖬 🔪 Fall A 🔪 Fall B 🔏 Graphik 🔏 Wertetabel	e 🕺 SWR_GWN 🔏 Feldkap	🔏 Äquival 🔏 Stoffdate	n 🖌 kd-Anorganik 🏑 kd-Orga	nik 🖉 Bio-Abbau 🖌 Konz-GW 🖉	Schadstoffmasse / MKW / Teeröl / Prüfwerte / GFS /

(s. Kap. 6.3.2). Für die Berechnung wird daher das Tabellenblatt *Fall B* (Abb. 31) ausgewählt.

Abb. 31: Tabellenblatt für Fallbeispiel 3

A 3.4.2.1 Dateneingabe Fall B

Im Tabellenblatt Fall B sind für die Eingabe der Parameter ausschließlich die gelb markierten Felder in der Spalte D vorgesehen (Abb. 31). Die restlichen Felder des Blattes sind gesperrt. Felder mit roter Schrift enthalten berechnete Zwischenergebnisse, die im weiteren Berechnungsverlauf benötigt werden. **Bei der Eingabe ist darauf zu achten, dass die Zahlenwerte jeweils den in Spalte C vorgegebenen Einheiten entsprechen.** In den Zellen D1 und D2 können der Name des Bearbeiters und ein Projektname eingegeben werden. In Zelle D3 wird das aktuelle Bearbeitungsdatum, in Zelle C4 die Versionsnummer angezeigt.

Die Dateneingabe ist für das Fallbeispiel 3 in Tabelle 3 detailliert beschrieben.

Zelle	Parameterbeschreibung und Textbezug zur Arbeitshilfe	Beispiel 3 Dateneingabe
D6	Zu betrachtender Schadstoff . Es ist zu beachten, dass eine Berechnung immer nur für einen Einzelstoff erfolgen kann.	Acenaphthen

Tab. 3: Dateneingabe für Beispiel 3

Zelle	Parameterbeschreibung und	Beispiel 3
	l extbezug zur Arbeitsnilfe	Dateneingabe
D7	Sickerwasserprüfwert nach BBodSchV (falls kein Prüfwert oder GFS vorliegt, ist ein numerischer Ersatzwert, z.B. 0,01 einzugeben).	0,2
D8	Als Kontaminierte Fläche ist die Größe der Emissionsfläche entsprechend Kap. 6.2, Gl. (3) der AH-DU einzusetzen.	1100
D9	Als Ort der Beurteilung (OdB) ist nach Kap. 5.2 für den Standort ein mittlerer Grundwasserhöchststand einzusetzen.	4,5
D10	Oberkante der Quelle (Kap. 6.2).	0,5
D11	Die Unterkante der Quelle bestimmt zusammen mit der Oberkante die Länge der Transportstrecke in D28 (s. a. Kap. 6.2).	0,7
D12	Bodenart (KA5) . Hier ist die Bodenart mit den in Tab. 70 der KA5 aufgeführten Kurzzeichen einzugeben. Alternativ kann die Schichtbezeichnung nach EN ISO 14688/89 (DIN 4022) eingegeben werden. Bei mehrschichtigen Profilen können auch mehrere Kurzzeichen eingegeben werden. Das Feld ist nur informativ, es wird nicht als Bezug in den weiteren Be- rechnungen benötigt.	Su2
D13	Feldkapazität (Kap. 5.2). Das Modell geht von einem einschichtigen homogenen Aufbau der Transportstrecke aus. Es ist daher ein mittlerer Wert für die Bodenkennwerte der Transportstrecke einzugeben. Der Wert kann aus dem Tabellenblatt <i>Feldkap</i> entnommen wer- den (s. Abb. 22). Bei mehrschichtigen Profilen ist hier der entsprechende äquivalente Wert aus dem Tabellenblatt <i>Äqui- val</i> einzusetzen (s. Kap. A 3.4.3).	23
D14	Die Trockenraumdichte der Quelle wird für die Berechnung der Gesamtschadstoffmasse der Quelle (D18) benötigt und ist aus Untersuchungsergebnissen abzuleiten.	1,3
D15	Die Trockenraumdichte der Transportstrecke wird für die Berechnung des Retardationsfaktors (D36) benötigt und mit Laboruntersuchungen ermittelt oder aus der Bodenart (KA5) geschätzt. Bei mehrschichtigen Profilen ist hier der entspre- chende äquivalente Wert aus dem Tabellenblatt <i>Äquival</i> ein- zusetzen (s. Kap. A 3.4.3).	1,7
D17	Schadstoffgesamtgehalt (Kap. 6.2). Im Beispiel 3 beträgt der Gesamtgehalt an PAK (ohne Naph- thalin) 150 mg/kg, der Acenaphthengehalt 85 mg/kg.	85

Zelle	Parameterbeschreibung und Textbezug zur Arbeitshilfe	Beispiel 3 Dateneingabe
D19	Der mobilisierbare Anteil stellt den durch Niederschlagswas- ser freisetzbaren Anteil des Gesamtgehaltes dar und ist vor- zugsweise aus Elutionsversuchen (Kap. 6.3.2 und A1.2.3) abzuschätzen. Der Wert für den mobilisierbaren Anteil be- stimmt maßgeblich die Emissionsdauer in D25 und den rech- nerischen Abklingkoeffizienten und hat daher großen Einfluss auf das Ergebnis der Berechnung. Im Beispiel 3 wurde ange- nommen, dass der sorbierte Anteil zu 100 % mobilisierbar ist (vollständig reversibles Sorptionsgleichgewicht Bo- den/Sickerwasser).	100
D21	Bei der Quellkonzentration initial ist die anfängliche Schad- stoffkonzentration im Sickerwasser der Quelle entsprechend Kap. 6.3.1 anzusetzen. Im Fallbeispiel 3 wurde die Anfangs- konzentration aus Säulenversuchen bestimmt. Der Konzentra- tionsverlauf ergab Hinweise auf mit der Elutionsdauer abklin- gende Konzentrationen. Für die Berechnung wird eine expo- nentiell abklingende Konzentration entsprechend der Prinzip- skizze im Tabellenblatt <i>Fall B</i> zugrunde gelegt.	750
D22	Die Vorbelastung der Transportstrecke berücksichtigt eine zu Beginn in der Transportstrecke vorhandene Vorbelastung bspw. aufgrund geogen erhöhter Hintergrundwerte oder einer bereits vorhandenen Kontamination. Einzugeben ist der Wert der Sickerwasserkonzentration, der im Sorptionsgleichgewicht mit den entsprechenden Feststoffgehalten steht.	0
D23	Besteht Grund zu der Annahme, dass die Quellkonzentration langfristig nicht auf Null zurückgeht, sondern auf einem kon- stanten Wert verharrt ("Tailing"-Konzentration), kann dies durch Eingabe einer asymptotischen Endkonzentration berücksichtigt werden (s. Prinzipskizze Abb. 31).	0
D24	Der Abklingkoeffizient wird in Zelle E24 berechnet und kann entweder in der Zelle D 24 übernommen werden oder es kann alternativ ein vom Anwender frei gewählter Abklingkoef- fizient (z. B. aus Säulenversuchen bestimmt) eingegeben wer- den. Bei leichtflüchtigen Stoffen mit möglicher Ausgasung zur Oberfläche kann der Abklingkoeffizient erhöht sein. Bei der Nachrechnung der Fallbeispiele ist darauf zu achten, dass der in Zelle E24 berechnete Wert korrekt in die Zelle D24 einge- geben wird.	8,484E-3

Zelle	Parameterbeschreibung und	Beispiel 3
	Textbezug zur Arbeitshilfe	Dateneingabe
D27	Die nach Kap. 7.2.1 und A 2.1 ermittelte Sickerwasserrate (SWR) wird als konstant über die gesamte Zeitdauer der Prognose angenommen. Bei Fällen, in denen es z.B. durch Nutzungsänderungen zu einer Veränderung der SWR kom- men kann, wird empfohlen, Berechnungen mit unterschiedli- chen SWR durchzuführen. Hilfsweise kann für die Abschät- zung der SWR auch das Tabellenblatt SWR_ <i>GWN</i> herange- zogen werden.	250
D31	Der Dispersivitäts-Skalenfaktor dient zur Berechnung der longitudinalen Dispersivität (D32) und des longitudinalen Dispersivitätskoeffizienten (D33) entsprechend Kap. 7.3.3 und A 2.3. Insbesondere bei langen Transportstrecken (>10 m) ist ggf. eine Reduzierung des Faktors zu empfehlen (Beispiele s. Kap. A 3.5). Bei leichtflüchtigen Stoffen ist hier der entspre- chende äquivalente Wert aus dem Tabellenblatt <i>Äquival</i> ein- zusetzen. (Kap. A2.3 und A 3.4.3).	0,1
D35	Der linearisierte Verteilungskoeffizient k_d dient zur Berech- nung des Retardationsfaktors in D36 (Kap. 7.3.3 und A2.4) und hat großen Einfluss auf das Ergebnis der Berechnung. Liegen keine Ergebnisse aus Laboruntersuchungen vor, kön- nen die Tabellenblätter <i>kd-Anorganik</i> und <i>kd-Organik</i> als Ori- entierung zur Abschätzung des k_d -Wertes herangezogen wer- den. (s. Kap. A 3.4.1, Fallbeispiel 2 und Abb. 32). Bei mehr- schichtigen Profilen oder der Berücksichtigung der Flüchtigkeit ist hier der entsprechende äquivalente Wert aus dem Tabel- lenblatt <i>Äquival</i> einzusetzen (s. Kap. A 3.4.3).	6,124
D37	Die Halbwertszeit Abbau (Kap. 7.3.3 und A2.5) wird zur Be- rechnung des Abbaukoeffizienten in D38 benötigt. Hierbei wird eine Abbaukinetik 1. Ordnung angenommen. Für nicht abbau- bare Stoffe ist aus programmtechnischen Gründen ein Wert von 1.000.000 einzusetzen. Liegen keine Ergebnisse aus La- boruntersuchungen vor, kann das Tabellenblatt <i>Bio-Abbau</i> als Orientierung zur Abschätzung der Halbwertszeit herangezo- gen werden (s. Kap. A 3.4.1, Fallbeispiel 2). Für Acenaphthen ergibt sich eine Spannweite der Datenbankwerte zwischen 0,017 und 0,592 Jahren. Als Eingabewert wird der konserva- tive Wert von 0,592 Jahren verwendet.	0,592

	А	В	С	D	
1	kd-Werte Organik				_
-	ina rrene erganne		-		_
2	aelles Folder: Einachefolder				
3	der k. Wert wird aus dem Tabelle	anhlatt "Ct	affdaton" i	ibernemmen	
5	der Koc-weit wird aus dem Taben	enbiatt St	undaten t	bernonmen	
6	lineeree Serptionemedall: a				
0		s-rd Cw	<u></u>		
7	k _d = C _{org} *K _{oc}				
8					
9					_
10	Stoff	Corg	Ka		_
11	Gruppe/Name	(%)	(I/Kg)		
79	Chlordibrommethan	0.1	0.035		_
80	Dichlorbrommethan	0.1	0.035		
81		0,1	0,000	Fin an	
82	PAK			Einga	nov equ
83	Inden	0,1	0,995	C _{org} fi	ür Beispiel 3
84	Naphthalin	0,1	1,837		
85	Methylnaphthalin	0,1	3,041		
86	Dimethylnaphthalin	0,1	5,023		
87	Acenaphthylen	0.1	6.124		
88	Acenaphthen	0,1	6,124		
89	Fluoren	0,1	11,298		
90	Phenanthren	0,1	20,845		
91	Anthracen	0,1	20,417		
92	Pluoranthen	0,1	60 242		
93	Panza(a)anthrasan	0,1	221 206		
95	Chrysen	0,1	236 048		
98	Benzo(a)nyren	0.1	787.046		
97	Benzo(h)fluoranthen	0.1	803.526		
98	Benzo(k)fluoranthen	0.1	787.046		
99	Benzo(ghi)pervlen	0.1	2679.168		
100	Dibenzo(a,h)anthracen	0,1	2624,219		
101	Indeno(123-cd)pyren	0,1	2679,168		
102					

Abb. 32: Ermittlung des k_d-Wertes für Fallbeispiel 3 mit Hilfe des Tabellenblatts kd-Organik

A 3.4.2.2 Berechnung der Ergebnis-Kenngrößen

Das Makro zur Berechnung wird durch Anklicken der Schaltfläche "*Start Berechnung*" in der Zelle D95 gestartet (Abb. 33). Mit dem Makro werden die Konzentrationsund Frachtentwicklung am Ort der Beurteilung in Jahresschritten berechnet und die Werte im Tabellenblatt *Wertetabelle* (Abb. 8) abgelegt. Neben der zeitlichen Entwicklung der Konzentration am OdB (Spalte B) wird in Spalte D der Wertetabelle auch noch die Entwicklung der Quellkonzentration in Jahresschritten angezeigt. Mit den Konzentrationswerten am OdB wird automatisiert eine graphische Darstellung des Konzentrationsverlaufs erzeugt und im Tabellenblatt *Graphik* angezeigt (Abb. 34).

41	Berechnung nach analytisch				
95	Konzentrations- und Frachtb	erechnung am O	dB	Start Berechnung	Schaltfläche anklicken
97	max. Konzentration	c _{max}	μ g/l	14,5	dificilent
98	Zeitpunkt der max. Konz.	t _{cmax}	а	144,0	
99	Zeitpunkt PW-Überschr.	t _{pwü}	а	45,0	
100	Zeitpunkt PW-Unterschr.	t _{pwu}	а	683,0	
101	Dauer PW-Überschr.	t _{pw}	а	638,0	
102	Schadstoffemission Quelle	E _{s1ges}	kg	24,019	
103	Schadstoffemission GW	E _{s2ges}	kg	0,812	
104	max. Fracht GW	E _{s2max}	g/a	3,996	
105	mittl. Fracht GW	E _{s2mittel}	g/a	1,272	
106	max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	3,6	
107	mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	1,2	
108	mobilisierbare Masse	M _{mob}	kg	24,310	1
109	Abbruchkriterium]

Abb. 33: Start der Berechnung und berechnete Kenngrößen für Fallbeispiel 3

Die Berechnung kehrt am Ende zur Anzeige der in Kap. 8.2 beschriebenen Ergebnis-Kenngrößen in das Tabellenblatt **Fall B** zurück. Bei langen Transportstrecken und Emissionszeiträumen kann die Berechnung einige Minuten in Anspruch nehmen. Die Berechnung läuft, solange das Sanduhr-Symbol auf dem Bildschirm sichtbar ist. Zur Betrachtung der Graphik und der Wertetabelle müssen die entsprechenden Tabellenblätter angeklickt werden.

Bei Fällen in denen die Quellkonzentration nicht auf 0 zurückgeht sondern sehr lange Zeit auf einem erhöhten Wert verharrt (asymptotische Endkonzentration >0) kann es vorkommen, dass die Schadstoffemission die mobilisierbare Masse überschreitet. In diesem Fall wird die Berechnung abgebrochen und das Abbruchkriterium 2 ausgegeben (Abb. 35)

41	Berechnung nach analytische				
95	Konzentrations- und Frachtb	erechnung am O	dB	Start Berechnung	
97	max. Konzentration	c _{max}	μ g/ Ι	71,7	,
98	Zeitpunkt der max. Konz.	t _{cmax}	а	386,0	
99	Zeitpunkt PW-Überschr.	t _{pwü}	а	71,0	
100	Zeitpunkt PW-Unterschr.	t _{pwu}	а	2011,0	Abbruch
101	Dauer PW-Überschr.	t _{pw}	а	1940,0	PW-Ü bis Abbruch
102	Schadstoffemission Quelle	E _{s1ges}	kg	13,585	bis Abbruch
103	Schadstoffemission GW	E _{s2ges}	kg	13,562	PW-Ü bis Abbruch
104	max. Fracht GW	E _{s2max}	g/a	19,708	3
105	mittl. Fracht GW	E _{s2mittel}	g/a	6,991	PW-Ü bis Abbruch
106	max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	17,9)
107	mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	6,4	PW-Ü bis Abbruch
108	mobilisierbare Masse	M _{mob}	kg	13,585	5
109	Abbruchkriterium				2
110					

111

112 Abbruchkriterium 1: keine Unterschreitung des PW im Berechnungszeitraum

113 Abbruchkriterium 2: Schadstoffemission Quelle überschreitet mobilisierbare Masse

Abb. 35: Ergebnis-Darstellung für den Fall, dass ein Abbruch der Berechnung aufgrund des Abbruchkriteriums 2 (Schadstoffemission Quelle überschreitet mobilisierbare Masse) auftritt

A 3.4.3 Verwendung äquivalenter Parameter

A 3.4.3.1 Leichtflüchtige Stoffe

Durch Anpassung des Dispersionskoeffizienten kann bei leichtflüchtigen Stoffen auch ein Übergang von der gelösten Phase (Sickerwasser) in die Bodenluft und die diffusive Ausbreitung in der Bodenluft berücksichtigt werden. Ein Hinweis, ob die Flüchtigkeit berücksichtigt werden sollte, ergibt sich aus der Flüchtigkeitsklasse in Spalte F des Tabellenblattes **Stoffdaten**, die nach einem in der Literatur [61] beschriebenen Verfahren berechnet wurde. Grundlage der Klasseneinstufung ist der Wert der Henry-Konstante. Eine Berücksichtigung in der Sickerwasserprognose ist bei Stoffen mit mittlerer oder hoher Flüchtigkeit zu empfehlen. Um die Verflüchtigung zu berücksichtigen, muss ein äquivalenter Dispersionskoeffizient nach Gleichung A11 (Kap. A2.3) errechnet werden. Für die Demonstration der Auswirkungen durch die Berücksichtigung der Flüchtigkeit wurde folgendes Fallbeispiel ausgewählt:

Fallbeispiel 4

Es handelt sich um das ehemalige Betriebsgelände eines metallverarbeitenden Betriebes. Bei Bodenluftuntersuchungen wurden nach einer bereits erfolgten Sanierungsmaßnahme noch hohe Bodenluftkonzentrationen (750 mg/m³) an Trichlorethen festgestellt. Laboruntersuchungen an Kernmaterial ergaben Trichlorethen-Gesamtgehalte von 55 mg/kg, die im Wesentlichen an eine bis 2 m Tiefe reichende schluffig-sandige Schicht mit deutlich erhöhtem humosem Anteil (C_{org} : 3%) gebunden sind. Es wird davon ausgegangen, dass die Trichlorethen-Kontamination sorptiv in der schluffighumosen Schicht gebunden ist und eine desorptionslimitierte Freisetzung mit abklingender Quellkonzentration vorliegt. Untersuchungen des Grundwassers ergaben Trichlorethen-Konzentrationen im Bereich von 200 bis 300 µg/l.

Für die Berechnung wird das Tabellenblatt *Fall B* (abklingende Quellkonzentration) ausgewählt. Die Berechnung wird ohne und mit Berücksichtigung der Verflüchtigung durchgeführt (Abb. 36).

	A	В	С	D	E	
3				Fallbsp. 4/AH Fallbsp. 4/AH		
4				ohne Flüchtigkeit	mit Flüchtigkeit	
5	Kennwert/Parameter	Symbol	Einheit	Vert	¥ert	
6	Schadstoff			Trichlorethen	Trichlorethen	
7	Prüfwert BBodSchV/GFS	PV/GFS	րց/I	10,00	10,00	
8	Kontaminierte Fläche	F	m²	500,0	500,0	
9	OdB (u GOK)	OdB	m	6,0	6,0	
10	Oberkante Quelle	OKq	m	0,1	0,1	
11	Unterkante Quelle	UKq	m	2,0	2,0	
12	Bodenart (KA5)			Su2	Su2	
13	Feldkapazitāt	FK	×	27,0	27,0 🗲	blau u
14	Trockenraumdichte Quelle	ρb-Q	kg/dm³	1,20	1,20	äquiva
15	Trockenraumdichte Transports	ρb-zs	kg/dm³	1,60	1,60	Paran
17	Gesamtgehalt	G	mg/kg TM	55,000	55,000	(Über
18	Gesamtmasse Quelle	Masker	kg	62,700	62,700	
19	Mobilisierbarer Anteil	M	×	100,0	100,0	ausi
20	flächenbez. mob. Masse		g/m²	125,400	125,400	blatt A
21	Quellkonzentration initial	c_1(0)	۲g/I	3260,0	3260,0	
22	Vorbelastung Transportstrecke	C;	µg/l	0,0	0,0	
23	asympt. Endkonzentration	C,	µg/l	0,0	0,0	
24	Abklingkonstante	k.,	1/a	7,799E-03	7,799E-03	
25	Emissionsdauer Quelle	t,	а	742,0	742,0	
26	Quellstärke initial	J_1(0)	mg/(m²*a)	978,0	978,0	
27	Sickerwasserrate	SVR	mm/a	300,0	300,0	
28	Länge Transportstrecke	z.	m	4,0	4,0	
29	Sickerwassergeschw.	¥	mła	1,111	1,111	
30	Schadstoffverweilzeit	t _{ata}	а	47,0	47,6	
31	Dispersivitäts-Skalenfaktor	f a		0,100	1,087	
32	long. Dispersivitāt	α,	m	0,400	4,348	
33	long. Disp.koeff.	D.	m²/a	0,444	4,831	
35	lin. ¥erteilungskoeff.	ka 👘	l/kg	2,033	2,063 🗲	
36	Retardationsfaktor	R		13,0	13,2	
37	Halbwertszeit Abbau	Tm	а	2,550	2,550	
38	Abbaukoeff, \lambda	λ	1/a	0,272	0,272	

blau umrahmt: äquivalente Parameter (Übernahme aus Tabellenblatt Äquival

Abb. 36: Eingabeparameter für Fallbeispiel 4 (ohne/mit Berücksichtigung der Verflüchtigung)

Als initiale Quellkonzentration (C_{Siwa} = 3.260 µg/l) wird die im Gleichgewicht mit der Bodenluftkonzentration (C_{Bolu} = 750 mg/m³) über die Henry-Konstante (H=0,23 bei 15°C) berechnete Sickerwasserkonzentration (C_{Siwa} = C_{Bolu} / H) angenommen. Als Halbwertszeit wurde der konservative Wert von 2,55 a aus dem Tabellenblatt *Bio-Abbau* übernommen.

Bei Berücksichtigung der Verflüchtigung sind für die Parameter Feldkapazität, Trockenraumdichte, Dispersivitäts-Skalenfaktor und linearer Verteilungskoeffizient k_d die äquivalenten Ersatzwerte einzugeben (blau umrahmte Felder der Abb. 36). Diese können mit dem Tabellenblatt **Äquival** (Abb. 37) berechnet werden.

	А	В	С	D	F	Н		R
1	Berechnung äguivalenter Pa	arameter f	ür Mehrsch	icht-Bodenn	rofil und flück	tige Stoffe		
-	Derectinung aquivalenter i t	aneterr	1 Mem 30	Inche Bouenp		lage stone		
2			ver 2.3					
3	geibe Feider: Eingabereider	i akai ahti at	wann ain M	ä ohti ako itouvo ri	t ongogohon io	t Wann ain Mächtigk	a litar na st fiùr	
4	Finweis: eine Schicht wird bert	icksichtigt,	Wenn ein M	achtigkeitswen	tangegeben is	t. wenn ein Macnugk bicht gelöscht worde	enswert für	
0	schicht i angegeben ist, musse	n auch die Zelle mit r	Parameter a	lusgelulit werd	en. son are so wwählen und	ment geröscht werde Inhalta löschan)	n, muss are	
7	entsprechende zene leer sem	zene mit i	cinter mausi	aste <u>emzem</u> at	uswamen unu	innane ioschenj		
6								
8	-							
9	Parameter	Symbol	Einheit	Wert				
10	Fall A oder B			В	ļ			
11	Stoff			Trichlorethen	 			
12	Sickerwasserrate	SWR	(mm/a)	300,000				
13	Henry-Konstante	н	(-)	2,303E-01				
14	Diffusionskoeff. Wasser	Dw	m²/a	0,025				
15	Diffusionskoeff. Luft	Dg	m²/a	215,011				
16	Dispersivitäts-Skalenfaktor	fd	(-)	0,100				
17								
18	Schicht-Nr	Bodenart	Mächtigkeit	Feldkapazität	Luftkapazität	Trockenraumdichte	lin. Verteilungs-	
19		KA5					koeffizient	
20	i		z(i)	Ek(i)	Lk(i)	pb(i)	kd(i)	
21			(m)	(Vol-%)	(Vol-%)	(kg/dm³)	(l/kg)	
22	1	Su2	4	27	21	1,6	2,033	
23	2							
24	3							
25	4							
26	5							
27	6							
28	1							
29	8							
30	9							
31	IU Summe/änvir		4	27.0	21.0	1 600	3.063	
32	Summe/aquiv.		4	27,0	21,0	1,000	2,005	
33	Örusisselende Denemeter	Complexit	The bash	Maria di Alianda				
34	Aquivalente Parameter	Symbol	Einneit	wert				
35	Feldkapazität	FK-äq	(%)	27,000		Die Werte der I	ot unterlegte	n Zellen
36	l uftkapazität	IK₋äα	(%)	21.000		sind in die Eind	abeblätter	
37	Trockenraumdichte	ob.75-är	(kg/dm ³)	1 600		Fall A bzw. Fall	B zu übertra	nen
37		pn-23-44	(kg/ulli)	1,000		raii A DZW. Fai	B zu ubertraț	gen
38	lin. Verteilungskoeff.	kd-äq	(l/kg)	2,063				
39	Retardationsfaktor	R-äq	(-)	13,227				
40	Tortuosität Bodenwasser	τw-äq	(-)	0,205				
41	lortuosität Bodenluft	⊤g-äq	(-)	0,114				
42	Sickerwassergeschwindigkeit	vsm-aq	(m/a)	1,111				
43	longitudinale Dispersivitat	a.z	(m)	0,400				
44	mechanische Dispersion	Dmech	(m ² /a)	0,444				
45	molekulare Diffusion	Dmol	(m²/a)	0,005				
46	Dispersion Verflüchtigung	Dvol	(m²/a)	4,382				
47	Dispersionskoeffizient	Dz-äq	(m²/a)	4,831				
48	Dispersivitäts-Skalenfaktor	fd-äq	(-)	1,087				

Abb. 37: Ermittlung der äquivalenten Parameter für Fallbeispiel 4 mit dem Tabellenblatt Äquival

Für die Berechnung der äquivalenten Parameter im Tabellenblatt **Äquival** sind die im oberen Teil des Blattes erforderlichen Stoffdaten (Henry-Konstante, Diffusionskoeffizient im freien Wasser, Diffusionskoeffizient in freier Luft) aus dem Tabellenblatt **Stoffdaten** (Abb. 38) zu übernehmen.

Für das Fallbeispiel 4 wurden die Werte für eine durchschnittliche Temperatur von 15°C ermittelt. Die restlichen Parameter Stoff, Sickerwasserrate und Dispersivitäts-Skalenfaktor im oberen Teil des Tabellenblattes **Äquival** (Abb. 37) sind entsprechend den Eingangsdaten aus den jeweiligen Tabellenblättern **Fall A** oder **Fall B** zu übernehmen.

	A	В	C	D	E	F	G	J	K	0	Р	T
1	Stoffdaten für organisch	e Stoffe										
2	-			Einstufung	der Flüchtigke	eit (n. Handbo	ok of Chem	ical Property Est	imation Meth	ods)		
3	grüne Felder: nach EPI-Suite Da	tenbank der	US-EPA	Henry-Kons	stante H							
4	gelbe Felder: Eingabefelder			H< 1,26e 5:	gering							
5				1,26e-5 <h<< td=""><td>4,087e-2: mitte</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></h<<>	4,087e-2: mitte	2						
6				H>4,082e-2	: hoch							
7												
8						Flüchtigkeit		Dampfdruck	Wasser-	Henry-	Diffusions-	Diffusions-
9	Stoff	Temperatur	Summen-	Molgew.	CAS-Nr	Klasse	Log (Koc)	bei T Spalte B	Löslichkeit	Konstante	koeffizient	koeffizient
10	Gruppe/Name		Formel						(25°C)		Luft (n. FSG)	Wasser (n. Worch)
11										bei T Spalte B	bei T Spalte B	bei T Spalte B
12		(°C)		(g/mol)			(l/kg)	(mm Hg)	(mg(l)	(-)	(m²/a)	(m²/a)
59												
60	LHKW											
61	halogenierte Alkene											
62	Tetrachlorethen (PER)	25	C2Cl4	165,83	127-18-4	hoch	2,029	1,850E+01	2,060E+02	7,235E-01	204,234	0.023
63	Trichlorethen (TRI)	15	C2HCI3	131,39	79-01-6	hoch	1,831	4,400E+01	1,280E+03	2,303E-01	215,011	0,025
64	cis-Dichlorethen	25	C2H2C12	96,94	156-59-2	hoch	1,641	2,010E+02	6,410E+03	1,668E-01	264,630	0,030
65	Vinylchlorid (VC)	25	C2H3CI	62,50	75-01-4	hoch	1,376	2,980E+03	8,800E+03	1,136E+00	330,233	0,038
66												
H (🕩 🖌 Fall A 🖉 Fall B 🖉 Graphik 🦯 We	rtetabelle 🖌 Kon	z-GW / GWN / Feldkap	Stoffdaten	kd-Anorganik	/ kd-Organik /	Bio-Abbau /	Äquival / MKW / Te	eröl / Prüfwerte	e (GFS /		1

Abb. 38: Eingabeparameter für Fallbeispiel 4 (ohne/mit Berücksichtigung der Verflüchtigung) im Tabellenblatt *Stoffdaten*

Um die Auswirkung der Flüchtigkeit zu erkennen, wurde für das Fallbeispiel 4 ein einschichtiges Profil mit der Bodenart Su2 ausgewählt. Als Mächtigkeit ist im Feld C22 des Tabellenblattes **Äquival** (Abb. 37) die Länge der Transportstrecke aus den Eingabeblättern Fall A (D26) bzw. Fall B (D28) zu übernehmen. Die Parameter Feldkapazität (D23) und Luftkapazität (F23) können dem Tabellenblatt **Feldkap** (Abb. 39) entnommen werden. Als Trockenraumdichte der Transportstrecke (H23) ist der Wert aus dem jeweiligen Tabellenblatt **Fall A** bzw. **Fall B** (D15) zu übernehmen. Der lineare Verteilungskoeffizient k_d kann mit dem Tabellenblatt **kd-Organik** (Abb. 40) berechnet werden.

15						
16	Bodenart	Trocken-	Grobboden-	Humusgehalt	Feldkapazität	Luftkapazität
17		rohdichte	Anteil			
18		ρt	Korngröße>2 mm		n. Tab. 70	n. Tab. 70
19		(kg/dm ³)	(Vol %)	(Masse %)	(Vol %)	(Vol %)
20	Ss	1,5	0	0	11	32
21	SI2	1,5	0	0	25	18
22	SI3	1,5	0	0	27	15
23	SI4	1,5	0	0	30	12
24	Slu	1,5	0	0	33	10
25	St2	1,5	0	0	22	20
26	St3	1,5	0	0	30	14
27	Su2	1,6	0	3	27	21
28	Su3	1,5	0	0	29	14
29	Su4	1,5	0	0	32	11
30	Ls2	1,5	0	0	34	9
31	Ls3	1,5	0	0	33	9
32	Ls4	1,5	0	0	32	11
33	Lt2	1,5	0	0	36	7
34	Lt3	1,5	0	0	39	5
35	Lts	1,5	0	0	37	6
36	Lu	1,5	0	0	36	7

Abb. 39: Ermittlung der Parameter Feldkapazität und Luftkapazität für Fallbeispiel 4 mit dem Tabellenblatt *Feldkap*

	A	В	С	D	
1	kd-Werte Organik				
2			0		
3	gelbe Felder: Eingabefelder		0		
4	der k _{oc} -Wert wird aus dem Tabelle	enblatt "Sto	ffdaten" i	ibernomme	en
5					
6	lineares Sorptionsmodell: c _s	=k _d *c _w			
7	k _d = C _{org} *K _{oc}				
8					
9					
10	Stoff	Corg	k _d		
11	Gruppe/Name	(%)	(l/kg)		
12					
53	Styrol	0,1	0,518		
54	Cumol	0,1	0,817		
55	Indan	0,1	0,995		
56			-		-
57	МТВЕ				
58	MTBE	0,1	0,005		
59					
60	LHKW				
61	halogenierte Alkene				
62	Tetrachlorethen (PER)	0.1	0.107		
63	Trichlorethen (TRI)	3	2,033		-
64	cis-Dichlorethen	0,1	0,044		
65	Vinylchlorid (VC)	0,1	0,024		
66					

Abb. 40: Ermittlung des k_d-Wertes für Fallbeispiel 4 mit dem Tabellenblatt *kd-Organik*

Die in das Tabellenblatt *Fall B* zu übertragenden äquivalenten Parameter sind in Abbildung 37 (rot unterlegt) gezeigt. Aufgrund der Einschichtigkeit ergibt sich für die Parameter Feldkapazität und Trockenraumdichte keine Änderung. Eine erhebliche Veränderung durch die Berücksichtigung der Flüchtigkeit ergibt sich für den Dispersivitäts-Skalenfaktor, der deutlich erhöht (1,087 anstelle des Standardwertes von 0,1) ist. Für den linearen Verteilungskoeffizienten kd ergibt sich eine leichte Erhöhung von 2,033 auf 2,063 l/kg.

Das Ergebnis der Berechnung für Fallbeispiel 4 ohne/mit Verflüchtigung ist in Abb. 41 gezeigt. Bei Berücksichtigung der Verflüchtigung ergibt sich durch die erhöhte Dispersivität eine deutlich geringere Maximalkonzentration. Allerdings tritt nicht in jedem Falle eine Verringerung der Maximalkonzentration bei Berücksichtigung der Verflüchtigung ein. Abhängig von der Halbwertszeit können sich auch höhere Maximalkonzentrationen ergeben (s. Kap. A 3.5).

			Fallbsp. 4/AH	Fallbsp. 4/AH
			ohne Flüchtigkeit	mit Flüchtigkeit
max. Konzentration	c _{max}	μ g/ Ι	892,3	712,1
Zeitpunkt der max. Konz.	t _{cmax}	а	69,0	60,0
Zeitpunkt PW-Überschr.	t _{pwü}	а	16,0	3,0
Zeitpunkt PW-Unterschr.	t _{pwu}	а	660,0	640,0
Dauer PW-Überschr.	t _{pw}	а	644,0	637,0
Schadstoffemission Quelle	E _{s1ges}	kg	62,174	62,083
Schadstoffemission GW	E _{s2ges}	kg	23,246	20,828
max. Fracht GW	E _{s2max}	g/a	133,844	106,822
mittl. Fracht GW	E _{s2mittel}	g/a	36,096	32,696
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	267,7	213,6
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	72,2	65,4
mobilisierbare Masse	M _{mob}	kg	62,700	62,700
Abbruchkriterium				

Abb. 41: Ergebnis der Sickerwasserprognose für Fallbeispiel 4 ohne bzw. mit Berücksichtigung der Verflüchtigung

A 3.4.3.2 Mehrschichtige Profile

Entsprechend der in Anhang 2.6 der AH-DU beschriebenen Methode können mit der analytischen Lösung auch mehrschichtige Profile berechnet werden. Hierzu müssen die Parameter Feldkapazität, Trockenraumdichte und der lineare Verteilungskoeffizient k_d (bei Berücksichtigung der Flüchtigkeit auch der Dispersivitäts-Skalenfaktor) durch sogenannte "äquivalente Parameter" ersetzt werden [42]. Die Wirkung einer mehrschichtig aufgebauten Transportstrecke wird an Hand des Fallbeispieles 1 (s. Kap. A 3.4.1) gezeigt. Anstelle der einschichtig aufgebauten Transportstrecke (Fallbeispiel 1/A3.4.1) aus einem schwach schluffigen Sand (Su2) wird ein dreischichtiges Profil mit dem Aufbau entsprechend Abbildung 42 und den Bodenparametern entsprechend Tabelle 4 zugrunde gelegt.

Abb. 42: Aufbau der Transportstrecke für Fallbeispiel 1

Bodenart	Mächtigkeit	Trocken- Raumdichte	Feldkapazität	рН	Corg	Tongehalt
	(m)	(kg/dm3)	(%)		(%)	(%)
fSms	1	1,5	14	4	0,1	0,5
Us	1	1,6	32	5	0,5	5
Su2	1	1,5	23	4	0,1	1

Tab. 4: Bodenparameter der Transportstrecke für Fallbeispiel 1a

Aus den Bodenparametern der Einzelschichten (Tab. 4) können mit Hilfe des Tabellenblattes Äquival (Abb. 43) die äquivalenten Parameter ermittelt werden. Falls die Flüchtigkeit nicht berücksichtigt werden soll (z. B. bei anorganischen Schadstoffen) können die Stoffdaten in den Feldern D13 –D15 des Tabellenblattes Äquival auf Null gesetzt werden. Die Bodenparameter der Einzelschichten sind in die gelb markierten Felder einzugeben. Für die Ermittlung der Parameter Feldkapazität und Luftkapazität kann das Tabellenblatt Feldkap herangezogen werden. Der lineare Verteilungskoeffizient ist mit dem Tabellenblatt kd-Anorganik oder kd-Organik zu ermitteln. Es können bis zu zehn Einzelschichten berücksichtigt werden. Eine Schicht wird berücksichtigt, falls eine Mächtigkeit in den Feldern der Spalte C eingegeben wird. Falls ein Mächtigkeitswert eingegeben wird, sind auch die restlichen Spalten mit Werten zu belegen. Soll eine Schicht gelöscht werden, muss die entsprechende Zeile leer sein (die einzelnen Felder mit rechter Maustaste einzeln auswählen und "Inhalte löschen" auswählen). Die Werte der rot unterlegten Felder sind anschließend in das relevante Tabellenblatt (Fall A für Fallbeispiel 1) zu übertragen. Falls die Flüchtigkeit nicht berücksichtigt werden soll (Stoffdaten sind Null), kann die Luftkapazität (Spalte F) auf Null gesetzt werden. Der Dispersivitäts-Skalenfaktor ändert sich in diesem Falle nicht und entspricht dem im Tabellenblatt (Fall A oder B) vorgegebenen Standardwert (0,1).

	A	В	C	D	F	Н	J	R
1	Berechnung äquivalenter Pa	arameter f	ür Mehrsch	nicht-Bodenp	rofil und flüch	ntige Stoffe		
2			Ver 2.3					
3	gelbe Felder: Eingabefelder							
4	Hinweis: eine Schicht wird beru	icksichtiat.	wenn ein M	ächtigkeitswert	t angegeben is	t. Wenn ein Mächtigk	eitswert für	
5	Schicht i angegeben ist, müsse	n auch die	Parameter a	usaefüllt werd	en. Soll die So	hicht aelöscht werde	n. muss die	
6	entsprechende Zeile leer sein	Zelle mit re	echter Maust	aste einzeln au	uswählen und	Inhalte löschen)		
7	· ·							
8								
9	Parameter	Symbol	Einheit	Wert				
10	Fall A oder B			Α				
11	Stoff			Cadmium				
12	Sickerwasserrate	SWR	(mm/a)	250,000				
13	Henry-Konstante	н	`(-)´	0,000E+00				
14	Diffusionskoeff. Wasser	Dw	m²/a	0				
15	Diffusionskoeff. Luft	Da	m ² /a	0				
16	Dispersivitäts-Skalenfaktor	fď	(-)	0,100				
17								
18	Schicht-Nr	Bodenart	Mächtigkeit	Feldkapazität	Luftkapazität	Trockenraumdichte	lin. Verteilunas-	
19		KA5	gion				koeffizient	
20	i		z(i)	Ek(i)	Lk(i)	ob(i)	kd(i)	
21			(m)	(Vol-%)	(Vol-%)	(kg/dm ³)	(l/ka)	
22	1	fSms	1	14	0	1.5	2.2	
23	2	Us	1	32	0	1,6	35,7	
24	3	Su2	1	23	0	1,5	3)
25	4							
26	5							
27	6							
28	7							
29	8							
30	9							
31	10		2	22.0	0.0	4.522	44.442	
32	Summe/aquiv.		3	23,0	0,0	1,533	14,113	
33								
34	Aquivalente Parameter	Symbol	Einneit	Wert				
35	Feldkapazität	FK₋äq	(%)	23,000		Die Werte der i	ot unterlegte	n Zellen
36	Luftkapazität	LK₋äq	(%)	0,000		sind in die Eing	jabeblätter	
37	Trockenraumdichte	ρb-zs-äq	(kg/dm³)	1,533		Fall A bzw. Fall	B zu übertra	gen
38	lin. Verteilungskoeff.	kd-äq	(l/kg)	14,113				
39	Retardationsfaktor	R-äq	(-)	95,087				
40	Tortuosität Bodenwasser	τw₋äq	(-)	0,605				
41	Tortuosität Bodenluft	τg-äq	(-)	0,000				
42	Sickerwassergeschwindigkeit	vsm-äq	(m/a)	1,087				
43	longitudinale Dispersivität	a.z	(m)	0,300				
44	mechanische Dispersion	Dmech	(m ^c /a)	0,326				
45	molekulare Diffusion	Dmol	(m²/a)	0,000				
46	Dispersion Verflüchtigung	Dvol	(m²/a)	0,000				
47	Dispersionskoeffizient	Dz-äq	(m²/a)	0,326				
48	Dispersivitäts-Skalenfaktor	fd-äq	(-)	0,100				

Abb. 43: Ermittlung der äquivalenten Parameter für das Fallbeispiel 1a (dreischichtiger Aufbau der Transportstrecke)

Ein Vergleich der Tabellenblätter für das Fallbeispiel 1 (einschichtig) und Fallbeispiel 1a (dreischichtig) ist in Abbildung 44 gezeigt.

Das Ergebnis der Berechnung für Fallbeispiel 1 mit einschichtigem und dreischichtigem Profil ist in Abbildung 45 gezeigt. Aufgrund des sandigen Schluffes (mittlere Schicht) ist der äquivalente k_d -Wert stark erhöht. Dies führt zu einer deutlich längeren Schadstoffverweilzeit bei gleicher Emissionsdauer, was zu einer zusätzlichen Abminderung führt (Verhältnis V_{QT} nach Gl. 17/Kap. 7.3.3 wird geringer).

			Fallbsp. 1/AH	Fallbsp. 1a/AH	
			einschichtig	dreischichtig	-
Kennwert/Parameter	Symbol	Einheit	Wert	Wert	
Schadstoff			Cadmium	Cadmium	
Prüfwert BBodSchV oder GFS	PW oder GFS	µg/l	5,00	5,00	
Kontaminierte Fläche	F	m ²	1700,0	1700,0	
Ort der Beurteilung (u.GOK)	OdB	m	3,5	3,5	
Oberkante Quelle (u.GOK)	OKq	m	0,0	0,0	
Unterkante Quelle (u.GOK)	UKq	m	0,5	0,5	
Bodenart (KA5)			Su2	fSms/Us/Su2	blau umrahmt:
Feldkapazität	FK	%	23,0	23,0 ┥	äquivalente
Trockenraumdichte Quelle	pb-Q	kg/dm ³	1,30	1,30	Parameter
Trockenraumdichte Transportstr.	pb-zs	kg/dm ³	1,50	1,53 🖣	
Gesamtgehalt	G	mg/kg TM	476,000	476,000	
Gesamtmasse Quelle	M _{Sch,F}	kg	525,980	525,980	
Mobilisierbarer Anteil	M _{mob}	%	10,0	10,0	
Quellkonzentration	C 0	µg/l	550,0	550,0	
Vorbelastung Transportstrecke	G	µg/l	0,0	0,0	
Emissionsdauer	te	а	225,0	225,0	
Quellstärke	J _{s1}	mg/(m ² *a)	137,5	137,5	
Sickerwasserrate	SWR	mm/a	250,0	250,0	
Länge Transportstrecke	Zs	m	3,0	3,0	
Sickerwassergeschw	∨ sm	m/a	1,087	1,087	
Schadstoffverweilzeit	t _{stm}	а	56,8	262,4	
Dispersivitäts-Skalenfaktor	f _d		0,100	0,100 ┥	
long. Dispersivität	۵z	m	0,3	0,3	
long. Disp.koeff.	Dz	m²/a	0,3	0,3	
lin. Verteilungskoeff.	k _d	l/kg	3,000	14,113	
Retardationsfaktor	R		20,6	95,1	
Halbwertszeit Abbau	T _{1/2}	а	1000000,000	1000000,000	
Abbaukoeffizient	٦.	1/a	0,000	0,000]

Abb. 44: Eingabe der äquivalenten Parameter für das Fallbeispiel 1/1a (dreischichtiger Aufbau der Transportstrecke)

			Fallbsp.1	Fallbsp.1a
			einschichtig	dreischichtig
max. Konzentration	c _{max}	μ g/ Ι	549,9	390,5
Zeitpunkt der max. Konz.	t cmax	а	236,0	360,0
Zeitpunkt PW-Überschr.	t pwü	а	21,0	99,0
Zeitpunkt PW-Unterschr.	t _{pwu}	а	376,0	915,0
Dauer PW-Überschr.	t _{pw}	а	355,0	816,0
Schadstoffemission Quelle	E _{s1ges}	kg	52,598	52,598
Schadstoffemission GW	E _{s2ges}	kg	52,548	52,365
max. Fracht GW	E _{s2max}	g/a	233,707	165,954
mittl. Fracht GW	E _{s2mittel}	g/a	148,024	64,173
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	137,5	97,6
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	87,1	37,7
mobilisierbare Masse	M _{mob}	kg	52,598	52,598
Abbruchkriterium				

Abb. 45: Ergebnis der Sickerwasserprognose für Fallbeispiel 1/1a mit einschichtigem und dreischichtigem Aufbau der Transportstrecke

A 3.5 Sensitivitätsbetrachtungen

Um den Einfluss verschiedener Eingabeparameter auf das Ergebnis zu verdeutlichen, wurden in den Fallbeispielen ausgewählte Eingabeparameter variiert.

A 3.5.1 Varianten zu Fallbeispiel 1

Ausgehend von den Parametern des Basisfalls (Abb. 22 bzw. Tab. 1) wurden für das Fallbeispiel 1 drei Varianten berechnet. Die Eingabeparameter sind in Abbildung 46 zusammenfassend dargestellt. Die gegenüber dem Basisfall veränderten Parameter sind blau umrahmt.

			Basisfall	Var. 1	Var. 2	Var. 3
Kennwert/Parameter	Symbol	Einheit	Wert	Wert	Wert	Wert
Schadstoff			Cadmium	Cadmium	Cadmium	Cadmium
Prüfwert BBodSchV oder GFS	PW oder GFS	µg/l	5,00	5,00	5,00	5,00
Kontaminierte Fläche	F	m ²	1700,0	1700,0	1700,0	1700,0
Ort der Beurteilung (u.GOK)	OdB	m	3,5	3,5	3,5	3,5
Oberkante Quelle (u.GOK)	OKq	m	0,0	0,0	0,0	0,0
Unterkante Quelle (u.GOK)	UKq	m	0,5	0,5	0,5	0,5
Bodenart (KA5)			Su2	Su2	Su2	Su2
Feldkapazität	FK	%	23,0	23,0	23,0	23,0
Trockenraumdichte Quelle	pb-Q	kg/dm³	1,30	1,30	1,30	1,30
Trockenraumdichte Transportstr.	pb-zs	kg/dm ³	1,50	1,50	1,50	1,50
Gesamtgehalt	G	mg/kg TM	476,000	476,000	476,000	476,000
Gesamtmasse Quelle	M _{Sch,F}	kg	525,980	525,980	525,980	525,980
Mobilisierbarer Anteil	M _{mob}	%	10,0	10,0	1,0	10,0
Quellkonzentration	C 0	μg/l	550,0	550,0	550,0	550,0
Vorbelastung Transportstrecke	G	µg/l	0,0	0,0	0,0	0,0
Emissionsdauer	te	а	225,0	225,0	22,5	225,0
Quellstärke	J _{s1}	mg/(m ² *a)	137,5	137,5	137,5	137,5
Sickerwasserrate	SWR	mm/a	250,0	250,0	250,0	250,0
Länge Transportstrecke	Zs	m	3,0	3,0	3,0	3,0
Sickerwassergeschw	V _{sm}	m/a	1,087	1,087	1,087	1,087
Schadstoffverweilzeit	t _{stm}	а	56,8	595, 0	595,0	595,0
Dispersivitäts-Skalenfaktor	f _d		0,100	0,100	0,100	0,010
long. Dispersivität	α	m	0,3	0,3	0,3	0,0
long. Disp.koeff.	Dz	m²/a	0,3	0,3	0,3	0,0
lin. Verteilungskoeff.	k _d	l/kg	3,000	32,900	32,900	32,900
Retardationsfaktor	R		20,6	215,6	215,6	215,6
Halbwertszeit Abbau	T _{1/2}	а	1000000,000	1000000,000	1000000,000	1000000,000
Abbaukoeffizient	1	1/a	0,000	0,000	0,000	0,000

Abb. 46: Eingabeparameter für die Varianten in Fallbeispiel 1

Variante 1:

Diese Variante zeigt den Einfluss der Bodenkenngröße "pH-Wert" auf die Berechnungen. Dieser Wert wurde im Tabellenblatt *kd-Anorganik* (Zelle H13) von 4 auf 6 erhöht (Abb. 47). Dadurch ergibt sich ein deutlich erhöhter linearer Verteilungskoeffizient von 32,9 l/kg als Eingabewert in Zelle D32.

		Freundlich Regressionskoeffizienten (Bericht BGR/2005)				Bodenkenngrößen			Linear. Freundlich-Isot		ndlich-Isoth.		
Element	Sym	Tab. BGR	log K*	a (pH)	b (log Ton)	c (log Corg)	n-Freundlich	рН	Corg	Ton	K _d -Freundlich	¹c _{si} (=Quellk.)	k _d -linearisiert
									(%)	(%)	(µg ^(1·n) *l ⁿ /kg)	µg/l	(l/ka)
Cadmium	Cd	Tab. 3.2-6	-0,827	0,521	0,419	0,376	0,836	6,0	0,10	1,0	83,8	500,0	32,9
Abb. 47: Berechnung des k _d -Werts für Variante 1 Eingabewert für Zelle D32 im Tabellenblatt Fall A												2	

Variante 2:

Neben dem erhöhten pH-Wert und dadurch höheren Verteilungskoeffizienten (Variante 1) wurde zusätzlich der mobilisierbare Anteil (D20) von 10% auf 1% verringert. Dies zeigt zusätzlich die Auswirkung einer kürzeren Emissionsdauer.

Variante 3:

Neben dem erhöhten pH-Wert und dadurch höheren Verteilungskoeffizienten (Variante 1) wurde der Dispersivitäts-Skalenfaktor (D29) von 0,1 auf 0,01 reduziert. Dies bewirkt eine Verringerung der longitudinalen Dispersivität (D30) von 0,30 m auf 0,030 m.

Abb. 48: Darstellung des Konzentrationsverlaufs am OdB für die Varianten des Beispiels 1

			Basisfall	Var. 1	Var. 2	Var. 3
max. Konzentration	c _{max}	μ g/ Ι	549,9	202,3	21,1	451,7
Zeitpunkt der max. Konz.	t _{cmax}	а	236,0	621,0	507,0	706,0
Zeitpunkt PW-Überschr.	t _{pwü}	а	21,0	225,0	255,0	426,0
Zeitpunkt PW-Unterschr.	t _{pwu}	а	376,0	1709,0	1047,0	1054,0
Dauer PW-Überschr.	t _{pw}	а	355,0	1484,0	792,0	628,0
Schadstoffemission Quelle	E _{s1ges}	kg	52,598	52,598	5,260	52,598
Schadstoffemission GW	E _{s2ges}	kg	52,548	52,064	4,664	52,474
max. Fracht GW	E _{s2max}	g/a	233,707	85,961	8,982	191,953
mittl. Fracht GW	E _{s2mittel}	g/a	148,024	35,083	5,889	83,557
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	137,5	50,6	5,3	112,9
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	87,1	20,6	3,5	49,2
mobilisierbare Masse	M _{mob}	kg	52,598	52,598	5,260	52,598
Abbruchkriterium						

Die Auswirkungen der Parametervariationen für Beispiel 1 auf den Konzentrationsverlauf am Ort der Beurteilung sind in Abbildung 48 dargestellt. Die Auswirkungen auf die berechneten Ergebnis-Kenngrößen sind in Abbildung 49 zusammengefasst.

Abb. 49: Ergebniskenngrößen für die Varianten des Beispiels 1

Im Basisfall ist das Verhältnis V_{QT} von Emissionsdauer (D23) zu Schadstoffverweilzeit (D28) mit > 4 ungünstig (s. a. Gl. (17)/Kap. 7.3.3). Dies führt zu einem "Durchbruch" der Quellkonzentration am OdB (s. Fallkonstellation A1 in Kap. 7.3.3). Aus Variante 1 wird deutlich, dass die Erhöhung des Verteilungskoeffizienten nicht nur zu einer deutlichen Verzögerung des Transports führt, sondern bei unveränderter Emissionsdauer aufgrund der Wirkung der Dispersion auch zu einem zusätzlichen Verdünnungseffekt (geringere Konzentrationen und Frachten am Ort der Beurteilung, die aber über einen längeren Zeitraum anhalten). Die insgesamt in das Grundwasser eingetragene Schadstoffmasse bleibt nahezu unverändert. Der in Variante 2 zusätzlich reduzierte mobilisierbare Anteil verstärkt den dispersiven Verdünnungseffekt, da sich V_{OT} von > 4 (Basisfall) auf 0,037 reduziert (s. Fallkonstellation A2 in Kap. 7.3.3). Hieraus resultiert eine erhebliche Abminderung der Konzentration am OdB um den Faktor 26. Allerdings wird auch unter diesen günstigen Bedingungen der Prüfwert am OdB noch überschritten. Variante 3 macht den Einfluss der reduzierten Dispersivität gegenüber der Variante 1 deutlich. Die dispersive Verdünnungswirkung ist reduziert, was zu deutlich höheren Konzentrationen am OdB führt. Die insgesamt in das Grundwasser eingetragene Schadstoffmasse bleibt wegen der kürzeren Zeitdauer der Prüfwertüberschreitung allerdings fast gleich.

A 3.5.2 Varianten zu Fallbeispiel 2

Ausgehend von den Parametern des Basisfalls (Tab. 1) wurden für das Fallbeispiel 2 drei Varianten berechnet. Die Eingabeparameter sind in Abbildung 50 zusammenfassend dargestellt. Die gegenüber dem Basisfall veränderten Parameter sind blau umrahmt.

			Basisfall	Var. 1	Var. 2	Var. 3
Kennwert/Parameter	Symbol	Einheit	Wert	Wert	Wert	Wert
Schadstoff			Naphthalin	Naphthalin	Naphthalin	Naphthalin
Prüfwert BBodSchV oder GFS	PW oder GFS	µg/l	2,00	2,00	2,00	2,00
Kontaminierte Fläche	F	m ²	400,0	400,0	400,0	400,0
Ort der Beurteilung (u.GOK)	OdB	m	5,0	5,0	5,0	5,0
Oberkante Quelle (u.GOK)	OKq	m	1,2	1,2	1,2	1,2
Unterkante Quelle (u.GOK)	UKq	m	1,8	1,8	1,8	1,8
Bodenart (KA5)			Su3	Su3	Su3	Su3
Feldkapazität	FK	%	26,0	26,0	26,0	26,0
Trockenraumdichte Quelle		kg/dm³	1,20	1,20	1,20	1,20
Trockenraumdichte Transportstr.	pb-zs	kg/dm ³	1,60	1,60	1,60	1,60
Gesamtgehalt	G	mg/kg TM	121,000	121,000	121,000	121,000
Gesamtmasse Quelle	M _{Sch,F}	kg	34,848	34,848	34,848	34,848
Mobilisierbarer Anteil	M _{mob}	%	100,0	100,0	100,0	100,0
Quellkonzentration	C 0	µg/l	1480,0	1480,0	1480,0	1480,0
Vorbelastung Transportstrecke	G	µg/l	0,0	0,0	0,0	0,0
Emissionsdauer	t _e	а	206,5	206,5	206,5	206,5
Quellstärke	J _{s1}	mg/(m ² *a)	421,8	421,8	421,8	421,8
Sickerwasserrate	SWR	mm/a	285,0	285,0	285,0	285,0
Länge Transportstrecke	Zs	m	3,2	3,2	3,2	3,2
Sickerwassergeschw	v ₅m	m/a	1,096	1,096	1,096	1,096
Schadstoffverweilzeit	t _{stm}	а	35,9	35,9	332,8	332,8
Dispersivitäts-Skalenfaktor	f _d		0,100	0,100	0,100	1,000
long. Dispersivität	α	m	0,3	0,3	0,3	3,2
long. Disp.koeff.	Dz	m²/a	0,4	0,4	0,4	3,5
lin. Verteilungskoeff.	k _d	l/kg	1,837	1,837	18,365	18,365
Retardationsfaktor	R		12,3	12,3	114,0	114,0
Halbwertszeit Abbau	T _{1/2}	а	1,240	0,360	0,360	0,360
Abbaukoeffizient	2	1/a	0,559	1,925	1,925	1,925

Abb. 50: Eingabeparameter für die Varianten in Beispiel 2

Variante 1:

Die Halbwertszeit Abbau (D34) wurde vom Wert des Basisfalls 1,24 Jahre (entspricht dem CalTox-Wert aus Tabellenblatt *Bio-Abbau* für das Kompartiment Oberboden) auf 0,36 Jahre (entspricht dem CalTox-Wert aus Tabellenblatt *Bio-Abbau* für das Kompartiment ungesättigte Zone) reduziert. Dies entspricht einer Erhöhung des Abbaukoeffizienten (D35) von 0,559 auf 1,925.

Variante 2:

Neben der Reduzierung der Halbwertszeit Abbau (D34) auf 0,36 Jahre (Variante 1) wurde zusätzlich der C_{org}-Gehalt in der Transportstrecke von 0,1 auf 1% erhöht. Der in D32 einzugebende lineare Verteilungskoeffizient k_d erhöht sich dadurch von 1,837 l/kg auf 18,365 l/kg.

Variante 3:

Neben der Reduzierung der Halbwertszeit Abbau (D34) auf 0,36 Jahre (Variante 1) und der Erhöhung des linearen Verteilungskoeffizienten k_d (D32) auf 18,365 l/kg (Variante 2) wurde zusätzlich der Dispersivitäts-Skalenfaktor von 0,1 um den Faktor 10 auf 1,0 erhöht.

Die Auswirkungen der Parametervariationen auf den Konzentrationsverlauf am OdB sind in Abbildung 51 dargestellt.

Abb. 51: Darstellung des Konzentrationsverlaufs am OdB für die Varianten des Beispiels 2

			Basisfall	Var. 1	Var. 2	Var. 3
max. Konzentration	c _{max}	μ g/ Ι	310,6	19,1	17,4	71,4
Zeitpunkt der max. Konz.	t cmax	а	209,0	112,0	302,0	221,0
Zeitpunkt PW-Überschr.	t _{pwü}	a	11,0	13,0	125,0	25,0
Zeitpunkt PW-Unterschr.	t _{pwu}	а	277,0	236,0	487,0	438,0
Dauer PW-Überschr.	t _{pw}	a	266,0	223,0	362,0	413,0
Schadstoffemission Quelle	E _{s1ges}	kg	34,848	34,848	34,848	34,848
Schadstoffemission GW	E _{s2ges}	kg	7,310	0,449	0,436	1,730
max. Fracht GW	E _{s2max}	g/a	35,403	2,180	1,989	8,136
mittl. Fracht GW	E _{s2mittel}	g/a	27,482	2,012	1,203	4,189
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	88,5	5,5	5,0	20,3
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	68,7	5,0	3,0	10,5
mobilisierbare Masse	M _{mob}	kg	34,848	34,848	34,848	34,848
Abbruchkriterium						

Die Auswirkungen auf die Ergebnis-Kenngrößen sind in Abbildung 52 zusammengefasst.

Abb. 52: Ergebniskenngrößen für die Varianten des Beispiels 2

Aufgrund der im Verhältnis zur Schadstoffverweilzeit deutlich längeren Emissionsdauer mit $V_{QT} > 4$ (s. Gl. (17)/Kap. 7.3.3) stellt sich für den Basisfall und die Variante 1 am OdB über einen längeren Zeitraum ein "quasistationärer" Zustand mit konstanten Konzentrationen ein, deren Höhe durch die jeweilige Abbaurate bestimmt ist. Die Variante 1 macht deutlich, dass die Abbaurate einen überragenden Einfluss auf die Konzentrationsentwicklung am OdB hat.

Der erhöhte Verteilungskoeffizient in Variante 2 führt gegenüber Variante 1 zwar zu einem verzögerten Transport, die Maximalkonzentration am OdB ist in beiden Varianten jedoch annähernd gleich. Variante 3 unterscheidet sich gegenüber Variante 2 durch eine erhöhte Dispersivität. Die kombinierte Wirkung des biologischen Abbaus in Verbindung mit der höheren Dispersivität führt zu einer deutlichen Verringerung der Abminderung bei Variante 3. Die Ursache für die unerwartete Verringerung der Abminderung (bei Erhöhung der Dispersivität wäre eigentlich eine zusätzliche Abminderung zu erwarten) liegt darin, dass bei erhöhter Dispersivität die Schadstofffront früher den Ort der Beurteilung erreicht und damit für biologische Abbauprozesse weniger Zeit bleibt. Dieser Effekt ist daher vom Verhältnis der Transportzeit zur Abbaurate (Damköhler-Zahl) abhängig.

A 3.5.3 Varianten zu Fallbeispiel 3

Ausgehend von den Parametern des Basisfalls (Abb. 31 bzw. Tab. 3) wurden für das Fallbeispiel 3 vier Varianten berechnet. Die Eingabeparameter sind in Abbildung 53 zusammenfassend dargestellt. Die gegenüber dem Basisfall veränderten Parameter sind blau umrahmt.

			Basisfall	Var. 1	Var. 2	Var. 3	Var. 4
Kennwert/Parameter	Symbol	Einheit	Wert	Wert	Wert	Wert	Wert
Schadstoff			Acenaphthen	Acenaphthen	Acenaphthen	Acenaphthen	Acenaphthen
Prüfwert BBodSchV/GFS	PW/GFS	µg/l	0,20	0,20	0,20	0,20	0,20
Kontaminierte Fläche	F	m ²	1100,0	1100,0	1100,0	1100,0	1100,0
OdB (u GOK)	OdB	m	4,5	4,5	4,5	4,5	4,5
Oberkante Quelle	OKq	m	0,5	0,5	0,5	0,5	0,5
Unterkante Quelle	UKq	m	0,7	0,7	0,7	0,7	0,7
Bodenart (KA5)	F V	0/	Suz	Suz	Su2	Suz	Su2
Feldkapazitat	FN	70	23,0	23,0	23,0	23,0	23,0
Trockenraumdichte Quelle	ρb-Q	kg/dm*	1,30	1,30	1,30	1,30	1,30
Trockenraumdichte Fransportstr.	pb-zs	kg/dm°	1,70	1,70	1,70	1,/0	1,/0
Gesamtmasse Quelle	M Sch,F	kg	24,310	24,310	24,310	24,310	24,310
Mobilisierbarer Anteil	M _{mob}	%	100,0	100,0	100,0	100,0	50,0
flächenbez. mob. Masse		g/m ²	22,100	22,100	22,100	22,100	11,050
Quellkonzentration initial	c _{s1} (0)	μg/l	750,0	750,0	750,0	750,0	750,0
Vorbelastung Transportstrecke	G	μg/l	0,0	0,0	0,0	0,0	0,0
asympt. Endkonzentration	Ca	µg/l	0,0	0,0	0,0	0,0	0,0
Abklingkonstante	k₅	1/a	8,484E-03	8,484E-03	8,484E-03	8,484E-03	1,697E-02
Emissionsdauer Quelle	te	а	970,0	970,0	970,0	970,0	484,9
Quellstärke initial	J _{≲1} (0)	mg/(m²*a)	187,5	187,5	187,5	187,5	187,5
Sickerwasserrate	SWR	mm/a	250,0	250,0	250,0	250,0	250,0
Länge Transportstrecke	Zs	m	3,8	3,8	3,8	3,8	3,8
Sickerwassergeschw.	V _{sm}	m/a	1,087	1,087	1,087	1,087	1,087
Schadstoffverweilzeit	t _{stm}	а	161,7	161,7	161,7	794,7	161,7
Dispersivitäts-Skalenfaktor	fa		0,100	0,100	0,010	0,010	0,100
long. Dispersivität	α	m	0,380	0,380	0,038	0,038	0,380
long. Disp.koeff.	Dz	m²/a	0,413	0,413	0,041	0,041	0,413
lin. Verteilungskoeff.	k _d	l/kg	6,124	6,124	6,124	30,618	6,124
Retardationsfaktor	R		46,3	46,3	46,3	227,3	46,3
Halbwertszeit Abbau	T _{1/2}	а	0,592	1,240	0,592	0,592	0,592
Abbaukoeff. 1	1	1/a	1,171	0,559	1,171	1,171	1,171

Abb. 53: Eingabeparameter für die Varianten in Beispiel 3

Variante 1:

Die Halbwertszeit Abbau (D37) wurde vom Wert des Basisfalls 0,592 Jahre (entspricht dem CalTox-Wert für die unges. Zone) auf 1,24 Jahre (entspricht dem Wert für Naphthalin in Fallbeispiel 2) erhöht. Dies bewirkt eine Verringerung des Abbaukoeffizienten (D38) von 1,171 auf 0,559.

Variante 2:

Der Dispersivitäts-Skalenfaktor wurde von 0,1 auf 0,01 reduziert. Dies bewirkt eine Verringerung der longitudinalen Dispersivität (D32) von 0,38 auf 0,038 m.

Variante 3:

Neben der Verringerung des Dispersivitäts-Skalenfaktors (Variante 2) wurde zusätzlich der C_{org} -Gehalt in der Transportstrecke von 0,1 auf 0,5 % erhöht. Der in D35 einzugebende k_d -Wert erhöht sich dadurch von 6,1 l/kg auf 30,6 l/kg.

Variante 4:

Der mobilisierbare Anteil wurde gegenüber dem Basisfall von 100 % auf 50 % halbiert. Dadurch erhöht sich der rechnerische Abklingkoeffizient von 0,008 auf 0,017 und die Emissionsdauer verkürzt sich von 970 auf 485 Jahre.

Die Auswirkungen der Parametervariationen für Beispiel 3 auf den Konzentrationsverlauf am OdB sind in Abbildung 54 dargestellt:

Abb. 54: Darstellung des Konzentrationsverlaufes am OdB für die Varianten des Beispiels 3

			Basisfall	Var. 1	Var. 2	Var. 3	Var. 4
max. Konzentration	c _{max}	μ g/ Ι	14,5	61,7	9,8	4,9	10,7
Zeitpunkt der max. Konz.	t _{cmax}	а	144,0	170,0	182,0	805,0	128,0
Zeitpunkt PW-Überschr.	t _{pwü}	а	45,0	42,0	111,0	552,0	45,0
Zeitpunkt PW-Unterschr.	t _{pwu}	а	683,0	898,0	654,0	1294,0	407,0
Dauer PW-Überschr.	t _{pw}	а	638,0	856,0	543,0	742,0	362,0
Schadstoffemission Quelle	E _{s1ges}	kg	24,019	24,263	23,937	23,959	11,964
Schadstoffemission GW	E _{s2ges}	kg	0,812	3,898	0,449	0,449	0,406
max. Fracht GW	E _{s2max}	g/a	3,996	16,978	2,699	1,338	2,943
mittl. Fracht GW	E _{s2mittel}	g/a	1,272	4,554	0,827	0,605	1,121
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	3,6	15,4	2,5	1,2	2,7
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	1,2	4,1	0,8	0,6	1,0
mobilisierbare Masse	M _{mob}	kg	24,310	24,310	24,310	24,310	12,155
Abbruchkriterium							

Die Auswirkungen auf die Ergebnis-Kenngrößen sind in Abb. 55 zusammengefasst.

Abb. 55: Ergebniskenngrößen für die Varianten des Beispiels 3

Im Vergleich zu Fallbeispiel 2 (konstante Quellkonzentration) wird deutlich, dass sich trotz der im Verhältnis zur Schadstoffverweilzeit deutlich längeren Emissionsdauer ($V_{QT} > 5$) für den Basisfall und die Varianten 1, 2 und 4 kein "quasistationärer" Zustand mit konstanten Konzentrationen am OdB einstellt, sondern die Durchbruchskurven ausgeprägte Maxima zeigen. Dies ist auf die exponentiell abnehmende Quellkonzentration zurückzuführen.

Variante 1 zeigt, dass die Abbaurate einen erheblichen Einfluss auf die Konzentrationsentwicklung am OdB hat. Je geringer die Abbaurate ist, desto höher ist die Konzentration am OdB.

Die Verringerung der Dispersivität in Variante 2 führt zu einer Konzentrationsverringerung gegenüber dem Basisfall. Die Ursache für die unerwartete zusätzliche Abminderung (bei Verringerung der Dispersivität wäre eigentlich eine geringere Abminderung zu erwarten) liegt darin, dass bei reduzierter Dispersivität die Schadstofffront später den OdB erreicht und damit für biologische Abbauprozesse mehr Zeit bleibt (vgl. Fallbeispiel 2, Variante 3). Dieser Effekt ist daher vom Verhältnis der Transportzeit zur Abbaurate (Damköhler-Zahl) abhängig.

Der erhöhte Verteilungskoeffizient in Variante 3 führt gegenüber Variante 2 zu einem verzögerten Transport und durch die verlängerte Abbauwirkung zu einer zusätzlichen Abminderung der Konzentration am OdB. Die in Variante 4 vorgenommene Reduzierung des mobilisierbaren Anteils und der daraus resultierende höhere rechnerische Abklingkoeffizient führt zu einer verringerten Emissionsdauer und einer im Vergleich zum Basisfall zusätzlichen Abminderung.

A 3.5.4 Varianten zu Fallbeispiel 4

Wie bereits im Kap. A 3.4.3.1 erläutert, ergibt sich bei Berücksichtigung der Verflüchtigung nicht in jedem Falle eine zusätzliche Abminderung durch den erhöhten Dispersionskoeffizienten, sondern die Auswirkung hängt von dem Zusammenspiel der Parameter Dispersionskoeffizient und Abbaurate ab. In der Variante 1 zum Fallbeispiel 4 wurde die Halbwertszeit des Basisfalls von 2,55 Jahren (entspricht CalTox-Wert für die Kompartimente Oberboden/Wurzelzone) auf 0,595 Jahre (entspricht CalTox-Wert für das Kompartiment Sediment) verringert und die Berechnung ohne und mit Berücksichtigung der Verflüchtigung durchgeführt. Die Eingabeparameter sind in Abbildung 56 zusammenfassend dargestellt. Die gegenüber dem Basisfall veränderten Parameter sind blau umrahmt.

			Basisfall	Basisfall	Var. 1	Var. 1
			ohne Verfl.	mit Verfl.	ohne Verfl.	mit Verfl.
Kennwert/Parameter	Symbol	Einheit	Wert	Wert	Wert	Wert
Schadstoff			Trichlorethen	Trichlorethen	Trichlorethen	Trichlorethen
Prüfwert BBodSchV/GFS	PW/GFS	μg/l	10,00	10,00	10,00	10,00
Kontaminierte Fläche	F	m ²	500,0	500,0	500,0	500,0
OdB (u GOK)	OdB	m	6,0	6,0	6,0	6,0
Oberkante Quelle	OKq	m	0,1	0,1	0,1	0,1
Unterkante Quelle	UKq	m	2,0	2,0	2,0	2,0
Bodenart (KA5)			Su2	Su2	Su2	Su2
Feldkapazität	FK	%	27,0	27,0	27,0	27,0
Trockenraumdichte Quelle		kg/dm°	1,20	1,20	1,20	1,20
Trockenraumdichte Transportstr.	pb-zs	kg/dm ³	1,60	1,60	1,60	1,60
Gesamtmasse Quelle	M _{Sch,F}	kg	62,700	62,700	62,700	62,700
Mobilisierbarer Anteil	M _{mob}	%	100,0	100,0	100,0	100,0
flächenbez. mob. Masse		g/m ²	125,400	125,400	125,400	125,400
Quellkonzentration initial	c _{s1} (0)	μg/l	3260,0	3260,0	3260,0	3260,0
Vorbelastung Transportstrecke	G	μg/l	0,0	0,0	0,0	0,0
asympt. Endkonzentration	Ca	µg/l	0,0	0,0	0,0	0,0
Abklingkonstante	k₅	1/a	7,799E-03	7,799E-03	7,799E-03	7,799E-03
Emissionsdauer Quelle	t _e	а	742,0	742,0	742,0	742,0
Quellstärke initial	J _{≲1} (0)	mg/(m ² *a)	978,0	978,0	978,0	978,0
Sickerwasserrate	SWR	mm/a	300,0	300,0	300,0	300,0
Länge Transportstrecke	Zs	m	4,0	4,0	4,0	4,0
Sickerwassergeschw.	v _{sm}	m/a	1,111	1,111	1,111	1,111
Schadstoffverweilzeit	t _{stm}	а	47,0	47,6	47,0	47,6
Dispersivitäts-Skalenfaktor	f _d		0,100	1,087	0,100	1,087
long. Dispersivität	۵z	m	0,400	4,348	0,400	4,348
long. Disp.koeff.	Dz	m²/a	0,444	4,831	0,444	4,831
lin. Verteilungskoeff.	k _d	l/kg	2,033	2,063	2,033	2,063
Retardationsfaktor	R		13,0	13,2	13,0	13,2
Halbwertszeit Abbau	T _{1/2}	а	2,550	2,550	0,595	0,595
Abbaukoeff. 1	λ	1/a	0,272	0,272	1,165	1,165

Abb. 56: Eingabeparameter für die Variante 1 zum Fallbeispiel 4 (ohne/mit Berücksichtigung der Verflüchtigung)

Die Auswirkungen der reduzierten Halbwertszeit für die Variante 1 ohne und mit Berücksichtigung der Verflüchtigung auf den Konzentrationsverlauf am OdB sind in Abbildung 57 dargestellt. Die Auswirkungen auf die Ergebnis-Kenngrößen sind in Abbildung 58 zusammengefasst. Im Gegensatz zum Basisfall führt die Berücksichtigung der Verflüchtigung bei der geringeren Halbwertszeit der Variante 1 nicht zu einer zusätzlichen Abminderung, sondern zu einer verringerten Abminderung mit einer deutlich erhöhten Maximalkonzentration am OdB. Die Ursache für die unerwartete Verringerung der Abminderung (bei Erhöhung der Dispersivität wäre eigentlich eine zusätzliche Abminderung zu erwarten) liegt darin, dass bei erhöhter Dispersivität die Schadstofffront früher den Ort der Beurteilung erreicht und damit für biologische Abbauprozesse weniger Zeit bleibt. Dieser Effekt ist daher vom Verhältnis der Transportzeit zur Abbaurate (Damköhler-Zahl) abhängig.

Die Vernachlässigung der Verflüchtigung führt daher nicht in jedem Fall zu einem Ergebnis auf der sicheren Seite!

Abb. 57: Darstellung des Konzentrationsverlaufes am OdB für die Variante 1 des Fallbeispiels 4 (ohne/mit Berücksichtigung der Verflüchtigung)

			Basisfall	Basisfall	Var. 1	Var. 1
			ohne Verfl.	mit Verfl.	ohne Verfl.	mit Verfl.
max. Konzentration	c _{max}	μ g/ Ι	892,3	712,1	82,8	206,0
Zeitpunkt der max. Konz.	t _{cmax}	а	69,0	60,0	51,0	33,0
Zeitpunkt PW-Überschr.	t _{pwü}	a	16,0	3,0	18,0	4,0
Zeitpunkt PW-Unterschr.	t _{pwu}	a	660,0	640,0	329,0	430,0
Dauer PW-Überschr.	t _{pw}	a	644,0	637,0	311,0	426,0
Schadstoffemission Quelle	E _{s1ges}	kg	62,174	62,083	55,750	59,523
Schadstoffemission GW	E _{s2ges}	kg	23,246	20,828	1,780	4,712
max. Fracht GW	E _{s2max}	g/a	133,844	106,822	12,420	30,899
mittl. Fracht GW	E _{s2mittel}	g/a	36,096	32,696	5,723	11,061
max. Emissionsstärke GW	J _{s2max}	mg/(m ² *a)	267,7	213,6	24,8	61,8
mittl. Emissionsstärke GW	J _{s2mittel}	mg/(m ² *a)	72,2	65,4	11,4	22,1
mobilisierbare Masse	M _{mob}	kg	62,700	62,700	62,700	62,700
Abbruchkriterium						

Abb. 58: Ergebniskenngrößen für die Variante 1 des Fallbeispiels 4 (ohne/mit Berücksichtigung der Verflüchtigung)

A 3.5.5 Fazit der Variationsrechnungen

Die Beispielrechnungen machen die Auswirkungen von Parametervariationen auf das berechnete Ergebnis sichtbar. Darüber hinaus wird deutlich, dass aufgrund der Kombinationswirkung der beim Transport wirkenden Prozesse eine einfache linear-kausale Prognose der Auswirkungen von Parameteränderungen nicht möglich ist. Dies gilt insbesondere, wenn leichtflüchtige Stoffe oder mehrschichtige Bodenprofile eine Rolle spielen.

A 3.6 Validierung

Die Plausibilität der Ergebnisse von ALTEX-1D wurde durch Vergleich mit Literaturangaben geprüft [11]/Anhang 2... Darüber hinaus wurden umfangreiche Vergleichsrechnungen mit einem numerischen Programm (Comsol 3.5) durchgeführt, um insbesondere die Plausibilität der Ergebnisse bei Verwendung "äquivalenter Parameter" (mehrschichtige Profile, Berücksichtigung der Flüchtigkeit) zu überprüfen.

A 3.6.1 mehrschichtige Profile

Zur Überprüfung der ALTEX-1D-Ergebnisse bei mehrschichtigen Profilen mit Verwendung äquivalenter Parameter wurde das Fallbeispiel 1a (s. Kap. A 3.4.3.2) mit dem numerischen Programm Comsol 3.5 bei stationärer Sickerwasserrate (250 mm/a) nachgerechnet. Die Berechnungen mit Comsol wurden sowohl für ein 3-Schicht – Modell wie auch für ein 1-schichtiges Ersatzmodell mit Annahme äquivalenter Parameter für die Ersatzschicht durchgeführt und die Ergebnisse mit ALTEX-1D verglichen. Wie aus Abb. 59 deutlich wird, ergab der Vergleich eine exzellente Übereinstimmung zwischen ALTEX-1D und dem numerischen Modell.

Abb. 59: Vergleich von Ergebnissen von ALTEX-1D und Comsol für das Fallbeispiel 1a (mehrschichtige Transportstrecke)

A 3.6.2 Berücksichtigung der Flüchtigkeit

Analog zur Vorgehensweise bei mehrschichtigen Profilen wurde das Fallbeispiel 4 (s. Kap. A3.4.3.1) mit Comsol bei stationärer Sickerwasserrate (300 mm/a) nachgerechnet. Dabei wurden 2 Modelle verwendet. Die reale Situation wurde durch Eingabe der Stoffdaten für Flüssigphase und Gasphase und originaler Dispersivität (0,4 m) gerechnet. Zusätzlich wurde noch eine Berechnung mit äquivalenten Parametern analog zu ALTEX-1D (ohne Berücksichtigung der Gasphase) durchgeführt. Wie aus Abb. 60 deutlich wird, ergab sich auch hier eine exzellente Übereinstimmung der Ergebnisse von Comsol und ALTEX-1D.

Abb. 60: Vergleich von Ergebnissen von ALTEX-1D und Comsol für das Fallbeispiel 4 (Berücksichtigung der Flüchtigkeit mittels äaquivalenter Parameter)

A 3.6.3 Auswirkung linearisierter kd-Werte

Das Sorptionsverhalten von Schwermetallen kann i.d.R am besten durch eine nichtlineare Freundlich-Isotherme (s. Kap. A 2.4) beschrieben werden. ALTEX-1D kann allerdings nur lineare Sorption berücksichtigen. Im Tabellenblatt kd-Anorganik wird daher aus den Freundlich-Parametern ein linearisierter kd-Wert berechnet. Um zu überprüfen, welche Abweichungen sich daraus ergeben, wurden für das Fallbeispiel 1 (s. Kap. A 3.4.1) Vergleichsrechnungen mit Comsol durchgeführt. Die Berechnungen mit Comsol wurde sowohl mit den originalen Freundlich-Parametern wie auch mit dem linearisierten kd-Wert durchgeführt. Wie aus Abb. 61 deutlich wird, ergaben sich nur geringe Abweichungen bei Verwendung des linearisierten kd-Wertes anstelle der Freundlich-Parameter.

Abb. 61: Vergleich von Ergebnissen von ALTEX-1D und Comsol für das Fallbeispiel 1 (linearisierter kd-Wert im Vergleich mit Freundlich-Isotherme)

A 3.7 Versionsgeschichte ALTEX-1D (Stand Februar 2010)

Die Excel-Anwendung ALTEX-1D wurde als Ergänzung der LABO/ALA-Arbeitshilfe "Sickerwasserprognose bei Detailuntersuchungen" entwickelt. ALTEX-1D ist eine eigenständige Excel-Datei mit der Bezeichnung ALTEX-1D_verXX.xls.

Version 1.0 (06/07)

Mit Umlaufbeschluss vom 10.8.2005 hat der ALA dem Unterausschuss "Sickerwasserprognose" den Auftrag erteilt, ein Berechnungsinstrument zur Sickerwasserprognose auf der Grundlage einer Excel-Anwendung zu erstellen. Die erste Version von ALTEX-1D wurde gemeinsam mit der Arbeitshilfe "Sickerwasserprognose bei Detailuntersuchungen" auf der 35. ALA-Sitzung am 16./17.1. 2007 in Berlin angenommen und an die LABO zur Veröffentlichung weitergeleitet. Die LABO hat auf der 31. Sitzung am 13./14.3.07 die Eignung der Arbeitshilfe für den Vollzug bestätigt und das ACK-Umlaufverfahren zur Veröffentlichung eingeleitet. Mit Umlaufbeschluss Nr. 12/2007 v. 14.5.07 hat die UMK der Veröffentlichung auf der LABO-Homepage zugestimmt und die Arbeitshilfe mit ALTEX-1D zur Anwendung in den Ländern empfohlen.

Version 2.0 (1.3.09)

Aufgrund der Ergebnisse eines in B-W durchgeführten Tests sowie einer Evaluierung verschiedener Programme zur Sickerwasserprognose im Rahmen des BMBF-Förderschwerpunktes "Sickerwasserprognose" wurde die Eignung von ALTEX-1D für den Vollzug bestätigt. Aus dem Test ergaben sich aber auch konkrete Hinweise auf mögliche Verbesserungen. Mit Bezug darauf hat der ALA in der 36. Sitzung am 12./13.6.07 den Auftrag für die Überarbeitung der Version 1.0 erteilt. Die überarbeitete Fassung wurde vom ALA auf der 39. Sitzung am 20./21.1.09 angenommen und zur Veröffentlichung auf der LABO-Homepage empfohlen. Im März 2009 erfolgte die Veröffentlichung der Version 2.0 auf der LABO-Homepage und der Homepage des LBEG.

Arbeitshilfe: Ah_Du_1208_732_8fa.pdf

ALTEX-1D: Altex-1D_12_2008.xls

Die Veränderungen gegenüber Version 1.0 umfassen folgende Punkte:

- a) Der Fall B (exponentiell abklingende Quellkonzentration) wird jetzt für alle Parameterkombinationen korrekt berechnet. Der Abklingkoeffizient kann jetzt explizit eingegeben werden. Als Anhaltspunkt dient der bisher berechnete Wert. Damit ist es möglich, berechnete Abklingkoeffizienten bspw. aus Säulenversuchen direkt zu übernehmen. Der bisher im Tabellenblatt "Fall B" ausgeblendete Parameter "asymptotische Endkonzentration" wird jetzt angezeigt. Damit können die häufig auftretenden Fälle einer langfristig über dem PW liegenden "Tailing"-Konzentration berücksichtigt werden.
- b) die Probleme mit dem fehlerhaften Abbruch der Berechnung bei sehr langen Laufzeiten wurden behoben.
- c) ALTEX-1D enthält jetzt ein Tabellenblatt "Stoffdaten", das die erforderlichen physikalisch-chemischen Daten zu einer großen Anzahl (159) altlastrelevanter Stoffe (u.a. alle organischen Stoffe, für die ein GFS angegeben ist) enthält. Die Stoffdaten

stammen aus qualitätsgesicherten Datenbanken u.a. aus EPI-Suite/US-EPA, National Institute of Standards and Technology (NIST), CaITOX/US-EPA. Die enthaltenen Stoffdaten wurden erheblich erweitert und umfassen jetzt neben der Wasserlöslichkeit auch die erforderlichen Daten für die Berücksichtigung leichtflüchtiger Stoffe wie Diffusionskoeffizienten in Wasser und Luft, Henry-Konstante und Dampfdruck. Die Stoffdaten werden temperaturabhängig entsprechend einer vom Anwender vorgegebenen Temperatur berechnet. Ein Feld mit einer Klasseneinstufung der Flüchtigkeit gibt einen Hinweis, ob die Flüchtigkeit des Stoffes berücksichtigt werden sollte.

- d) Das bisherige Blatt "Abbau" wurde durch das Blatt "Bio-Abbau" ersetzt. Das Blatt "Bio-Abbau" enthält für alle im Tabellenblatt "Stoffdaten" aufgeführten Stoffe Halbwertszeiten, die mit einer Regressionsbeziehung nach Klein/Fraunhofer aus Biowin-Daten errechnet wurden. Darüber hinaus sind für viele Stoffe zusätzlich noch Halbwertszeiten für unterschiedliche Kompartimente (Wurzelzone, ungesättigte Zone, Grundwasser) angegeben, die dem Programmpaket CalTox entnommen wurden. Die Werte sind im Vergleich mit Biowin meist konservativer und stellen damit eine gute Ergänzung dar, um dem Anwender eine Vorstellung der Bandbreite zu geben, falls er keine eigenen Werte aus Labor- oder Felduntersuchungen zur Verfügung hat
- e) das Blatt "kd-Werte Anorganik" wurde um den Ansatz von "van den Berg und Roels" erweitert. Damit sind jetzt auch Abschätzungen der kd-Werte für die Schwermetalle möglich, für die keine Freundlich-Parameter aus den Pedotransferfaktoren nach BGR/Utermann vorliegen.
- f) ALTEX-1D enthält jetzt ein Tabellenblatt "Äquival" zur Berechnung äquivalenter Parameter, das in Zusammenarbeit mit Prof. Schneider/TU HH entwickelt wurde. Damit können Bodenprofile mit bis zu 10 Schichten und gleichzeitig die Flüchtigkeit von Stoffen berücksichtigt werden. Die Ergebnisse wurden durch Berechnungen mit numerischen Programmen (Hydrus 1D und Comsol Multiphysics) überprüft und bestätigt.
- g) Die überarbeitete Version von ALTEX-1D enthält jetzt ein Tabellenblatt "Feldkap" mit dem die benötigten Eingabeparameter Feldkapazität und Luftkapazität für die in der KA5 aufgeführten Bodenarten (Tab. 70 KA5) einschließlich der Korrekturen für erhöhten Grobbodenanteil oder Humusanteile automatisch berechnet werden.
- h) zur Abschätzung von Quellkonzentrationen bei vorhandenen Kontaminationen mit Phase wurden die Blätter "MKW" und "Teeröl" eingefügt. Sie ermöglichen eine einfache Abschätzung der Gleichgewichtskonzentration für Stoffgemische wie Mineralölprodukte (Benzin, Diesel) oder unterschiedliche Teeröle unter Berücksichtigung der Stoffgemischzusammensetzung nach Raoult, wenn Daten aus Laboruntersuchungen (Säulenversuche) nicht vorliegen.
- i) Als Anhaltspunkt zur einfachen Abschätzung der Sickerwasserrate/Grundwasserneubildung wurde das Blatt "GWN" eingefügt. Damit kann eine grobe Abschätzung der Grundwasserneubildung nach der Methode von Beims&Gutt (Sachsen) vorgenommen werden, wenn genauere Daten zur Anwendung von DIN 19687 bzw. des TUB-BGR- Verfahrens nicht vorliegen.

- j) Im Tabellenblatt "Wertetabelle" wird jetzt für den Fall B (abklingender Quellterm) auch die zeitliche Entwicklung der Quellkonzentration angegeben.
- k) ALTEX-1D enthält jetzt ein Berechnungsblatt "Konz-GW". Damit kann aus dem Ergebnis der Sickerwasserprognose eine Konzentration im Grundwasser (als tiefengemittelte Konzentration über eine vorzugebende Aquifermächtigkeit) abgeschätzt werden. Das Ergebnis kann herangezogen werden, um im Rahmen eines iterativen Prozesses einen Verdünnungsfaktor für eine Rückrechnung der Konzentration am OdB aus im Grundwasser gemessenen Konzentrationen abzuschätzen. Der Anwender bekommt darüber hinaus auch einen Anhaltspunkt, ob durch die in das Grundwasser eingetragene Sickerwasserfracht eine Überschreitung der Geringfügigkeitsschwellen im Grundwasser und damit ggfs. ein Grundwasserschaden droht.
- I) Es wurde ein Tabellenblatt "GFS" eingefügt, das die Geringfügigkeitsschwellenwerte der LAWA enthält.

Die Arbeitshilfe insbesondere der Anhang 3 (Anleitung zu ALTEX-1D) wurde entsprechend den Änderungen in ALTEX-1D angepasst und um zusätzliche Fallbeispiele erweitert.

Die folgenden Aktualisierungen wurden ausschließlich auf der Homepage des LBEG vorgenommen. Im pdf-Dokument der Arbeitshilfe ist die jeweilige Version aus dem auf Seite 2 unten links aufgeführten Datum ersichtlich.

Version 2.1 (17.4.2009)

- Im Tabellenblatt "Äquival" wurde eine fehlerhafte Formel bei der Berücksichtigung leichtflüchtiger Stoffe korrigiert;
- Arbeitshilfe mit Anhang 3 an die Änderungen angepasst.

Version 2.2 (23.6.2009) nicht auf der LBEG-Homepage veröffentlicht

- Fehlerhafte Formel bei Berechnung des Diffusionskoeffizienten korrigiert;
- Fehlermeldungen im Tabellenblatt "GW-Konz" abgefangen;
- Formatierung der Spalte C im Tabellenblatt "kd-Organik" auf Exponentialformat umgestellt;
- Anpassung der Schrittweite bei der Berechnung des Konzentrationsverlaufes wegen Abbrüchen aufgrund Überschreitung der maximalen Zeilenzahl im Tabellenblatt "Wertetabelle" bei langen Zeiträumen.

Version 2.3 (23.10.2009)

- Anzeige der Versions-Nr. in allen Tabellenblättern;
- Anzeige des PW in der Graphikausgabe und in der Wertetabelle;
- Beschriftung der Graphik-Ausgabe verbessert;
- Schrittweitensteuerung für Berechnung der Konzentrationsentwicklung verbessert;
- Fehlerhafte Formel bei der Berechnung des äquivalenten kd-Wertes im Tabellenblatt "Äquival" korrigiert;
- Arbeitshilfe mit Anhang 3 an die Änderungen angepasst.

Version 2.4 (23.02.2010)

- fehlerhafte Formeln (bei Humusgehalten > 15% falsche Zuschlagswerte) in Spalte F des Tabellenblattes "Feldkap" korrigiert;
- fehlerhafte Formeln in Zellen M15, M16 und M205 des Tabellenblattes "Stoffdaten" korrigiert;
- Fehlermeldungen im Tabellenblatt "GW-Konz" abgefangen;
- missverständliche Parametereingabe bei Fällen mit asymptotischer Endkonzentration im Tabellenblatt "Fall B" korrigiert. Die initiale Quellkonzentration entspricht jetzt der Summe der asymptotischen Endkonzentration und dem exponentiell abfallenden Quellterm. Damit ist sichergestellt, dass sich die Quellkonzentration bei langen Zeiträumen asymptotisch dem Wert der asymptotischen Endkonzentration annähert (bisher Abfall auf 0). Die Prinzipskizze im Tabellenblatt wurde angepasst;
- Im Programmablauf für den Fall B wurde eine Überprüfung der Massenbilanz (Vergleich der emittierten Masse mit dem mobilisierbaren Vorrat) eingebaut. Die Berechnung wird jetzt abgebrochen, wenn die emittierte Masse den mobilisierbaren Vorrat überschreitet;
- Die Ergebnisausgabe in beiden Tabellenblättern "Fall A" und "Fall B" wurde um zusätzliche Parameter (Schadstoffemission Quelle, mobilisierbare Masse, mittl. Emissionsstärke GW) erweitert und neu strukturiert. Bei Abbruch der Berechnung wird jetzt die Abbruchursache in einem eigenen Ausgabefeld angegeben;
- In beiden Tabellenblättern "Fall A" und "Fall B" kann jetzt eine Vorbelastung der Transportstrecke durch Eingabe einer Anfangskonzentration berücksichtigt werden;
- Änderung der Einheiten für die Sättigungskonzentration Ci,sat von mg/l auf µg/l in den Tabellenblättern "Teeröl" und "MKW";
- Graphikausgabe ergänzt um Versions-Nr, Schadstoff/Fallkonstellation, Dateibezeichnung und Datum;
- Formatierungen in den Tabellenblättern angepasst;
- Registerblätter eingefärbt (gelb: Eingabeblätter, rot: Ausgabeblätter, grün: Hilfstabellenblätter);
- Kommentare in ausgewählten Zellen der Tabellenblätter "Fall A" und "Fall B" eingefügt;
- Tabellenblatt "Konz-GW" an veränderte Ausgabestruktur "Fall A" und "Fall B" angepasst;
- "Sanduhr"-Anzeige während Laufzeit der Berechnung eingebaut;
- Stoffdatenblatt, sowie die Tabellenblätter "Bio-Abbau" und "kd-Organik" wurde um zusätzliche organische Stoffe erweitert;
- Neues Tabellenblatt "Schadstoffmasse" zur Berechnung der Schadstoffmasse aus Ergebnissen von Bodenuntersuchungen nach Anhang A1.3 der AH-DU eingefügt;
- Tabellenblatt "GWN" umbenannt in "SWR_GWN"
- Anhang 3 der Arbeitshilfe DU (Benutzungsanleitung ALTEX-1D) überarbeitet und in eigenständiges Dokument überführt
- Arbeitshilfe DU aktualisiert