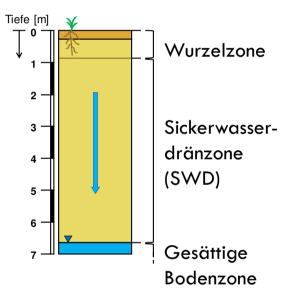
30 Jahre Bodendauerbeobachtung in Niedersachsen

Langjährige N-Bilanzsalden, Nmin-

Werte und N-Austrag mit

dem Sickerwasser der Intensiv-BDF

Referat Landwirtschaft,
Bodenmonitoring
A. Fier, H. Groh, K. Hauck, H.
Höper, K. Korte, L. Noltemeyer



Inhalt

Ergebnisse Intensiv-BDF – Mittelwerte der Jahre 2001-2016

- N-Bilanzsalden
- Herbst-Nmin-Ergebnisse
- N-Austräge mit dem Sickerwasser in der Wurzelzone
- N-Austräge mit dem Sickerwasser in der Sickerwasserdränzone (Nitrattiefenprofile der ungesättigten Zone)
 - Welche Eingangsgrößen sind erforderlich, um den N-Austrag abzuschätzen?

Schematische Darstellung Bodenzonen L. Noltemeyer (2021)

Der N-Bilanzsaldo

Für die landwirtschaftlich genutzten BDF liegen Brutto-Stickstoff-Bilanzsalden der Jahre **2001** bis **2016** vor (Korte et al. 2019, Geobericht 37). Die organische und mineralische Düngung wurde zu 100 % angerechnet.

Brutto-N-Bilanzsaldo [kg ha⁻¹ a⁻¹] = N-Zufuhr – N-Abfuhr

N-Zufuhr: organische + mineralische Düngergaben + legumen N-Fixierung

Die N-Gehalte der Mineraldünger stammen größtenteils aus Herstellerangaben, für die N-Gehalte in Gülle, Jauche und Festmist wurden Standardwerte der LWK Niedersachsen verwendet. Für die N-Gehalte im Gärrest lagen größtenteils Analysenwerte vor. Auf Grünland wurde zusätzlich die Nährstoffrückführung über Dung bei Beweidung berücksichtigt (25 % von N-Anfall).

N-Abfuhr: Größtenteils Analysenergebnisse von Handernten (z.T. Korrekturfaktoren für Erträge erforderlich). Weideerträge wurden über Art und Anzahl Tiere und Faustzahlen zur Trockenmasseaufnahme geschätzt.

Der N-Bilanzsaldo

Für die hier erfolgte Auswertung der Intensiv-BDF (acht Ackerbaustandorten und ein Grünlandstandort) wurden zusätzlich die gasförmigen NH₃-N-Ausbringungsverluste abgezogen:

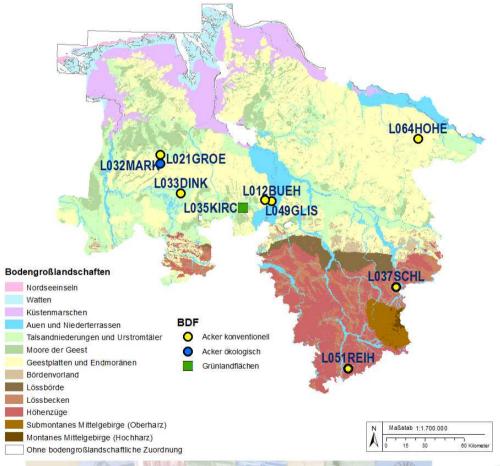
Netto-N-Bilanzsaldo [kg ha⁻¹ a⁻¹] = N-Zufuhr_(abzügl.NH3-N-Ausbringungsverluste) – N-Abfuhr

NH ₃ -N-Ausbringungs-	
usbringungsverluste) — N-Abfuhr	

Wirtschafts- düngerart	NH ₃ -N-Ausbring- ungsverluste (%)
Rinder	10,9
Schweine	8,4
Geflügel	27,0
Pferde/Schafe	13,9
Gärreste	10

Mineraldüngerart	NH ₃ -N-Ausbring- ungsverluste (%)
KAS	0,7
AHL	8,1
Harnstoff	12,8
NP-Dünger	4,1
NK- und NPK-Dünger	4,1
andere Einnährstoffdünger	0,8

Schmidt et al. (2007)

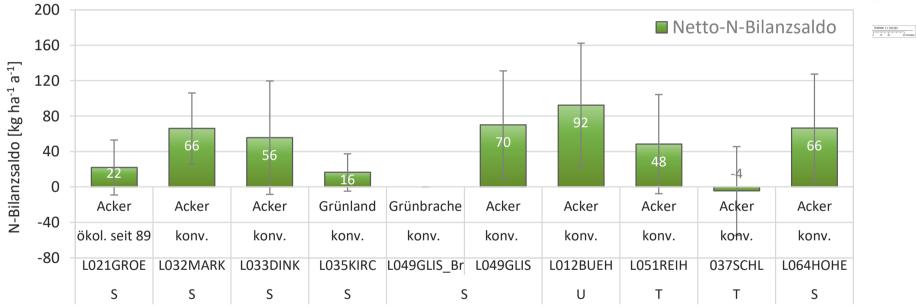

EMEP (2016) in Haenel et al. (2020) (Thünen Report 77)

Standorte der Intensiv-BDF

Der Netto-N-Bilanzsaldo Mittelwerte 2001–2016

kg N ha ⁻¹ a ⁻¹	L021 (ökol.) GROE	L032 MARK	L033 DINK	L035 KIRC	L049 GLIS_Br	L049 GLIS	L012 BUEH	L051 REIH	037 SCHL	L064 HOHE
Bodentyp	Podsol			Pseudo- gley-Esch	Pods Braun		pseudovergley- ter Auenboden	Pelosol	Gley-Au- enboden	Braunerde
Mittlerer Grund- wasserstand [m]	3,9	2,4	1,7	4,7	28,4		2,5	>30 m	2,9	4,3
Fruchtfolge	31% WG, 25% SG, 12% Kart, 13% KöMais, 19% KöLeg		WG,	extensive Weide, In- tensivierung ab 2013		he; 55% % Mais,	63% WG, 6% SG, 31% WRaps		25% ZR,	25% WG, 13% ZR, 25% Kart, 31% Mais, 6% Sonstiges
Bilanzsaldo Netto	22	66	56	16	0	70	92	48	-4	66

WG= Wintergertreide, SG= Sommergetreide, ZR= Zuckerrübe, Kart= Kartoffeln, KöLeg= Körnerleguminose, LegG= Leguminose/Grasgemenge



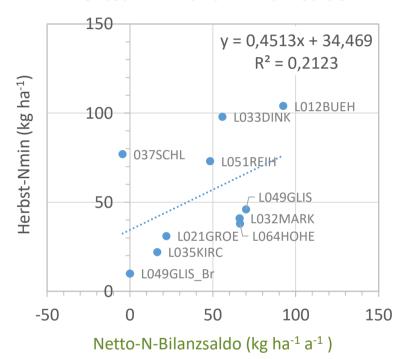
Der Netto-N-Bilanzsaldo Mittelwerte 2001–2016

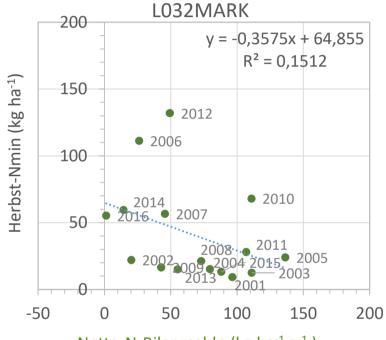
Der Herbst-Nmin und der Netto-N-Bilanzsaldo

Mittelwerte 2001–2016

kg N ha ⁻¹ (a ⁻¹)	L021(ökol.) GROE	L032 MARK	L033 DINK	L035 KIRC	L049 GLIS_Br	L049 GLIS	L012 BUEH	L051 REIH	037 SCHL	L064 HOHE
Bodentyp	Podsol	Podsol, vergleyt	Podsol- Gley	Pseudo- gley-Esch	Podsol-Braunerde		pseudovergley- ter Auenboden	Pelosol	Gley-Auen- boden	Braun- erde
Mittl. GWS [m]	3,9	2,4	1,7	4,7	28	,4	2,5	>30 m	2,9	4,3
N-Bilanzsaldo Netto	22	66	56	16	0	70	92	48	-4	66
Herbst-Nmin	31	41	98	22	10	46	104	73	77	38
Standardabw.	21	37	61	16	3	41	56	44	54	22

GWS= Grundwasserstand





Der Herbst-Nmin und der Netto-N-Bilanzsaldo 2001–2016

Herbst-Nmin und N-Bilanzsaldo

Herbst-Nmin und N-Bilanzsaldo

Netto-N-Bilanzsaldo (kg ha⁻¹ a⁻¹)

schwach positiver Zusammenhang

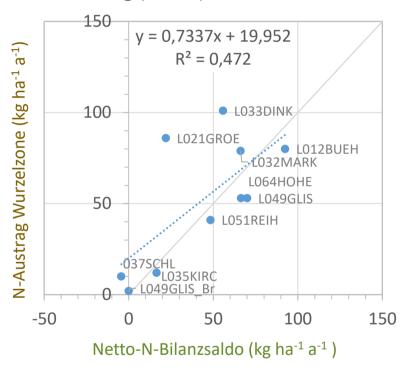
kein Zusammenhang zwischen N-Bilanzsaldo und Herbst-Nmin bei Betrachtung von Einzeljahren

Der N-Austrag aus der Wurzelzone und der N-Bilanzsaldo

Mittelwerte 2001–2016

	Submontanes Mittelgebirge (Oberharz)									
kg N ha ⁻¹ a ⁻¹	L021 GROE	L032 MARK	L033 DINK	L035 KIRC	L049 GLIS_Br	L049 GLIS	L012 BUEH	L051 REIH	037 SCHL	L064 HOHE
Bodentyp	Podsol	Podsol, vergleyt	Podsol- Gley	Pseudo- gley-Esch	Pods Braune		pseudo-vergley- ter Auenboden	Pelosol	Gley-Auen- boden	Braun- erde
Hauptbodenart / FK _{We}	S / 148	S / 134	S / 113	S/97	S / 1	04	U / 341	T/306	T / 409	S/96
Mittl. GWS [m]	3,9	2,4	1,7	4,7	28,	4	2,5	>30 m	2,9	4,3
N-Bilanzsaldo Netto	22	66	56	16	0	70	92	48	-4	66
N-Austrag Wurzelzone*	86	79	101	12	2	53	80	41	10	53
Standardabw.	65	53	35	14	3	26	54	60	20	35
Anzahl Jahre	13	12	14	12	5	9	13	12	10	14
Tiefe Saugsonden (dm)	8	8	8	8	8	8	4,5	7	3,5	8
Sickerwasserrate (I/m²)*	454	400	220	206	300	320	214	202	28	297

GWS= Grundwasserstand



* Hauck (2019), unveröffentlicht

N-Austrag aus der Wurzelzone und der Netto-N-Bilanzsaldo

N-Austrag (Wurz.) und N-Bilanzsaldo

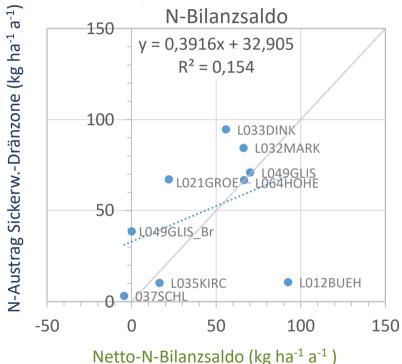
Der N-Austrag in der Sickerwasserdränzone und der Netto-N-Bilanzsaldo Mittelwerte

			200	1–20	16	Bodergratil and chaffen to observe the second of the secon	Action Conjugate Confidence Confidence	LOSTREH VINERE NOTATION AND ADMINISTRATION ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATION AND ADMINISTRATI	
USS	1022	1.025	1.040	1040	1.012	1.051	027	1.064	

kg N ha ⁻¹ a ⁻¹	L021 GROE	L032 MARK	L033 DINK	L035 KIRC	L049 GLIS_Br	L049 GLIS	L012 BUEH	L051 REIH	037 SCHL	L064 HOHE
Bodentyp	Podsol	Podsol, vergleyt	Podsol- Gley	Pseudo- gley-Esch	Podsol-Br	aunerde	pseudo-vergley- ter Auenboden	Pelosol	Gley-Auen- boden	Brau- nerde
Mittl. GWS [m]	3,9	2,4	1,7	4,7	28,	4	2,5	>30 m	2,9	4,3
N-Bilanzsaldo Netto	22	66	56	16	0	70	92	48	-4	66
N-Austrag Wurzelzone	86	79	101	12	2	53	80	41	10	53
N-Austrag Sicker- wasserdränzone*	67	84	95	10	39	71	11	-	3	67
Jahr(e) mit Bohrung	2001, 2002	2002, 2011	2003	2003, 2015	2010	2015	2012, 2016	-	2003	2001, 2010, 2016

GWS= Grundwasserstand

* abgeleitet aus Noltemeyer (2021), Geobericht 39



Der N-Austrag in der Sickerwasserdränzone und der Netto-N-Bilanzsaldo Mittelwerte 2001–2016

N-Austrag Sickerwasserdränzone und

An vielen Standorten ist der N-Austrag in der Sickerwasserdränzone höher als der Netto-N-Bilanzsaldo

L012BUEH: Durch die Auendynamik + humose Bänder unterhalb der Wurzelzone, wird ein großer Teil des N-Austrages in der Sickerwasserdränzone denitrifiziert.

Der N-Emissionssaldo (Summe aus N-Zufuhr und N-Abfuhr)

An mehreren Standorten liegt der Netto-N-Bilanzsaldo deutlich unter dem N-Austrag mit dem Sickerwasser. Wie lässt sich diese Lücke schließen? Dazu müssten alle Größen bekannt sein, über die N zu- oder abgeführt wird.

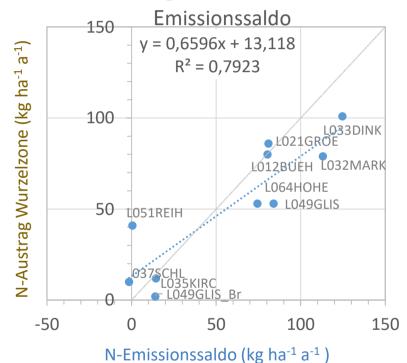
N-Emissionssaldo = Netto N-Bilanzsaldo + N-Deposition – Denitrifikation ± N-Vorratsänderung

Hier nicht berücksichtigt: N-Zufuhr freilebende N-Fixierer, N-Zu- oder Abfuhr durch Erosion, N-Zufuhr durch Wildtiere (Gänse)

Der N-Austrag in der Wurzelzone und der N-Emissionssaldo 2001 - 2016

kg N ha ⁻¹ a ⁻¹	L021 GROE	L032 MARK	L033 DINK	L035 KIRC	L049 GLIS_Br	L049 GLIS	L012 BUEH	L051 REIH	037 SCHL	L064 HOHE
Bodentyp	Podsol	Podsol, vergleyt	Podsol- Gley	Pseudo- gley-Esch	Podsol-Braunerde		pseudo-vergley- ter Auenboden	Pelosol	Gley-Auen- boden	Braun- erde
Mittl. GWS [m]	3,9	2,4	1,7	4,7	28,	4	2,5	>30 m	2,9	4,3
Bilanzsaldo Netto	22	66	56	16	0	70	92	48	-4	66
Denitrifkation ¹	5	20	30	20	5	5	30	10	60	5
Deposition ²	28	28	29	18	19	19	18	13	12	13
N-Vorratsänderung ³	-36	-39	-70	0	0	0	0	51	-51	0
N-Emissionssaldo	81	113	125	14	14	84	80	1	-1	74
N-Austrag Wurzelzone	86	79	101	12	2	53	80	41	10	53

¹ Wienhaus et al. (2008), Geobericht 9; ² Schaap et al. (2018), PINETI-3 Modellierung; ³Höper (2021), unveröffentlicht



Der N-Austrag in der Wurzelzone und der N-Emissionssaldo 2001–2016

0

N-Austrag Wurzelzone und N-

- Der N-Austrag in der Wurzelzone und der N-Emissionssaldo korrelieren mit R²=0,79 enger als der N-Austrag in der Wurzelzone und der Netto-N-Bilanzsaldo mit R²=0,47
- Die Werte streuen um die 1:1 Linie
 - Für eine bessere Übereinstimmung von N-Austrag in der Wurzelzone und N-Emissionssaldo müssten die Denitrifikation und die Deposition vor Ort gemessen werden.

Zusammenfassung

- Der Netto-N-Bilanzsaldo ist nur eine Teilgröße aller N-Zu- und Abfuhren (N-Emissionssaldo). Er korreliert dennoch gut mit dem N-Austrag aus der Wurzelzone.
- Die N-Vorratsänderung im Boden kann je nach Standort erheblichen Einfluss auf den N-Austrag nehmen. Im Boden kann sowohl N festgelegt als auch freigesetzt werden:
 - C- und N-Anstieg z.B. durch: einsetzenden Zwischenfruchtanbau, Grundwasseranstieg, Acker zu Grünland, humusmehrende Fruchtfolge
 - C- und N-Verluste z.B. durch: Entwässerung/Grundwasserabsenkung, Grünlandumbruch, Umstellung auf humuszehrende Fruchtfolge
- Für eine bessere Übereinstimmung von N-Austrag und N-Emissionssaldo müssten die Denitrifikation und die Deposition vor Ort gemessen werden.

