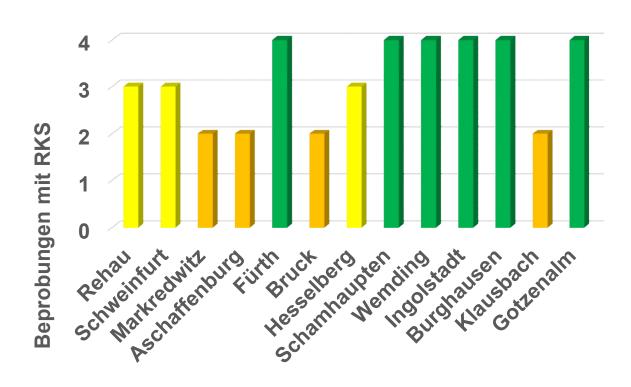
Volumenbezogene Probenahme mittels Rammkernsonde

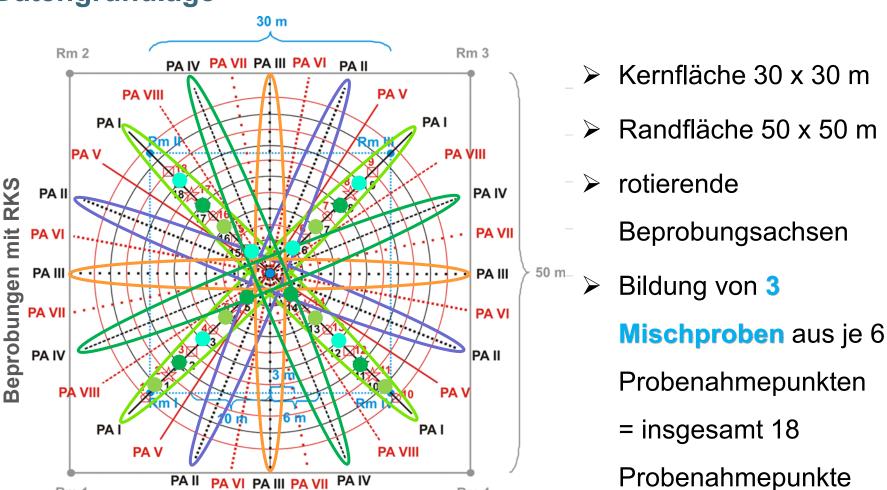
Chancen und Grenzen der Trockenrohdichte-Bestimmung

Bodendauerbeobachtung ist mehr als "nur" OBERbodendauerbeobachtung!



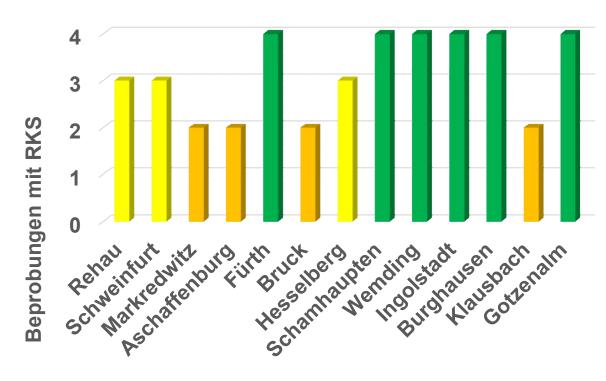
Rammkernsonde (RKS, unten) = aneinandergereihte Stechzylinder (oben)

→ Volumen pro cm Sonde mit 8 cm $\emptyset \approx 35$ cm³


Datengrundlage

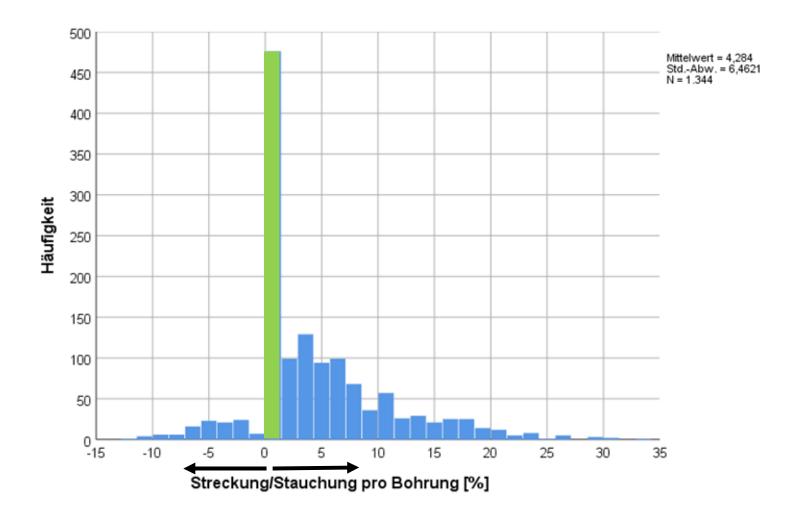
- ➤ 13 BDF
- Probenahme in 2010, 2013, 2016 und 2019
 - → 41 Beprobungen

Datengrundlage

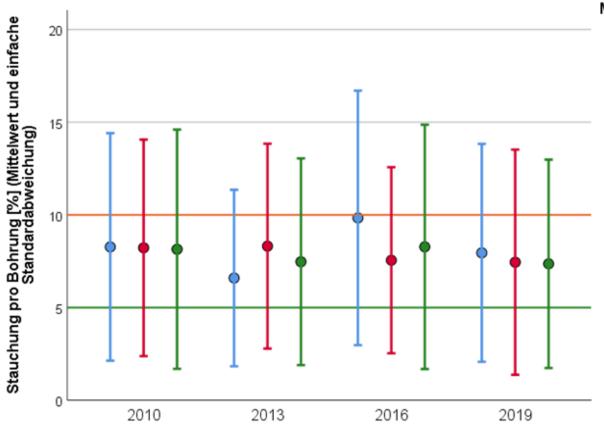

Rm 4

Rm 1

PA VI PA III PA VII PA IV


Datengrundlage

- > n der TRD
 - 617 Einzelwerte
 - Mittelwerte
 - 212 horizont- & tiefenstufenbezogen
 - 156 rein
 horizontbezogen
- ➤ Skelettgehalt 0 70 %
- alle Mineralbodenarten, kein Torf
- > Keine Ackerstandorte



Stauchung/Streckung aller Bohrungen

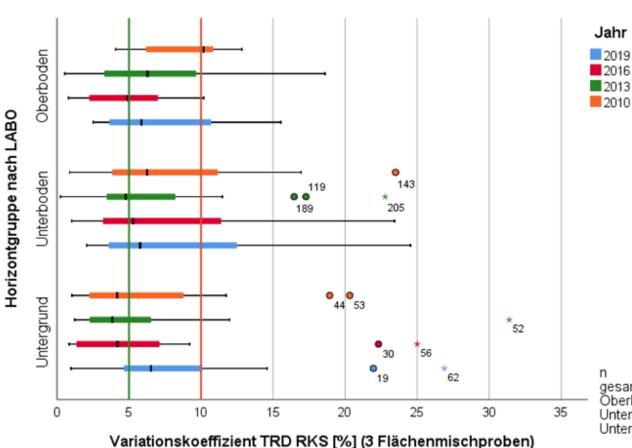
Nur Stauchung aller Bohrungen

Mischprobe

Ι	1
Ι	2
Ι	3

2010 1 99 1,0 27,0 8,3 6,1 2 94 1,0 26,0 8,2 5,8 3 103 1,0 31,3 8,1 6,5 4 65 1,1 21,5 6,6 4,8 2 70 1,1 25,7 8,3 5,5 3 68 1,1 29,7 7,5 5,6 4 39 1,1 23,8 9,8 6,9 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 4 47 2,0 29,3 8,0 5,9 2 50 1,1 33,7 7,4 6,1		Misch- probe	n	Min	Max	MW	Stabw
3 103 1,0 31,3 8,1 6,5 2013 2 70 1,1 21,5 6,6 4,8 3 68 1,1 29,7 7,5 5,6 4 39 1,1 23,8 9,8 6,9 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 4 47 2,0 29,3 8,0 5,9 2 50 1,1 33,7 7,4 6,1		1	99	1,0	27,0	8,3	6,1
2013	2010	2	94	1,0	26,0	8,2	5,8
2013 2 70 1,1 25,7 8,3 5,5 3 68 1,1 29,7 7,5 5,6 2016 1 39 1,1 23,8 9,8 6,9 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 4 47 2,0 29,3 8,0 5,9 2 50 1,1 33,7 7,4 6,1		3	103	1,0	31,3	8,1	6,5
2013 2 70 1,1 25,7 8,3 5,5 3 68 1,1 29,7 7,5 5,6 2016 1 39 1,1 23,8 9,8 6,9 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 4 47 2,0 29,3 8,0 5,9 2 50 1,1 33,7 7,4 6,1							
3 68 1,1 29,7 7,5 5,6 2016 1 39 1,1 23,8 9,8 6,9 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 47 2,0 29,3 8,0 5,9 2019 2 50 1,1 33,7 7,4 6,1	2013	1	65	1,1	21,5	6,6	4,8
2016 1 39 1,1 23,8 9,8 6,9 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 47 2,0 29,3 8,0 5,9 2 50 1,1 33,7 7,4 6,1		2	70	1,1	25,7	8,3	5,5
2016 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 47 2,0 29,3 8,0 5,9 2019 2 50 1,1 33,7 7,4 6,1		3	68	1,1	29,7	7,5	5,6
2016 2 56 1,1 18,9 7,6 5,0 3 46 1,1 28,8 8,3 6,6 47 2,0 29,3 8,0 5,9 2019 2 50 1,1 33,7 7,4 6,1							
3 46 1,1 28,8 8,3 6,6 1 47 2,0 29,3 8,0 5,9 2019 2 50 1,1 33,7 7,4 6,1	2016	1	39	1,1	23,8	9,8	6,9
1 47 2,0 29,3 8,0 5,9 2019 2 50 1,1 33,7 7,4 6,1		2	56	1,1	18,9	7,6	5,0
2019 2 50 1,1 33,7 7,4 6,1		3	46	1,1	28,8	8,3	6,6
2019 2 50 1,1 33,7 7,4 6,1							
	2019	1	47	2,0	29,3	8,0	5,9
		2	50	1,1	33,7	7,4	6,1
3 55 1,1 30,0 7,4 5,6		3	55	1,1	30,0	7,4	5,6

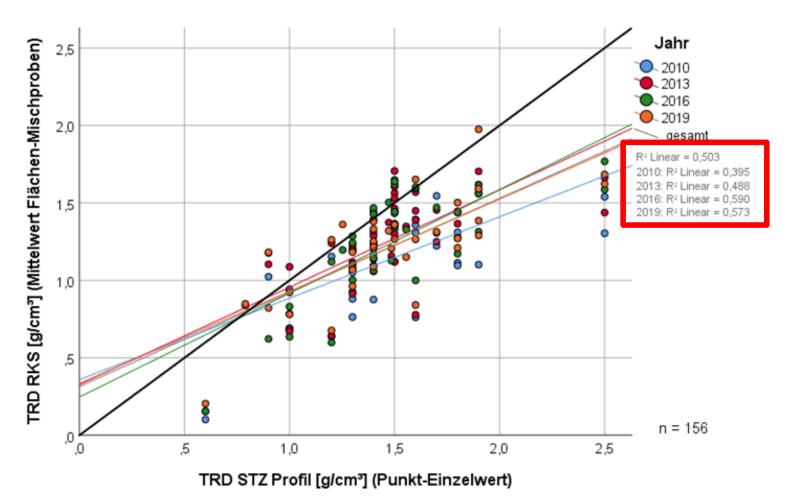
n gesamt = 792 2010 = 296 2013 = 203 2016 = 141 2019 = 152


Stauchung je Horizont bzw. Tiefenstufe – Rangkorrelation nach Spearman (n = 212 Horizonte, z.T. mit Tiefenstufen)

	r (Spearman)	Sig. (2-seitig)
Wassergehalt [Massen-%]	-,292**	0,000
Corg [Massen-%]	-,289**	0,000
Sand [Massen-%]	,337**	0,000
Schluff [Massen-%]	-,175 [*]	0,011
Ton [Massen-%]	-,308**	0,000
Ungleichförmigkeitsgrad (< 2 mm) [-]	,161*	0,019
Skelettgehalt (> 2mm) [Vol-%]	0,012	0,866

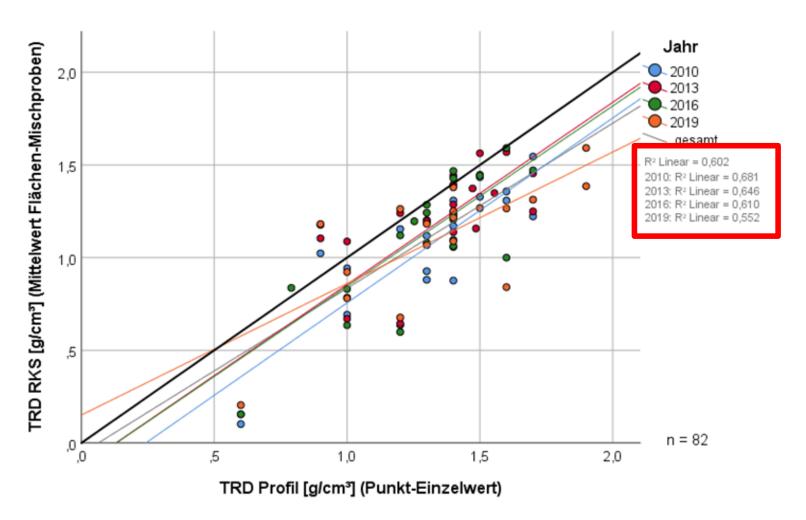
- Korrelation insgesamt gering (r > 0,2 < 0,5)</p>
- Wasser- & Corg-Gehalt: je höher, desto weniger Stauchung
- Bodenart:
 - je mehr Schluff und Ton, desto weniger Stauchung
 - je mehr Sand, desto größere Stauchung
 - je ungleichförmiger, desto größere Stauchung
- Keine Korrelation mit Skelettgehalt

Streuung der RKS-TRD (linear entstaucht) innerhalb der Horizontgruppen – Präzision

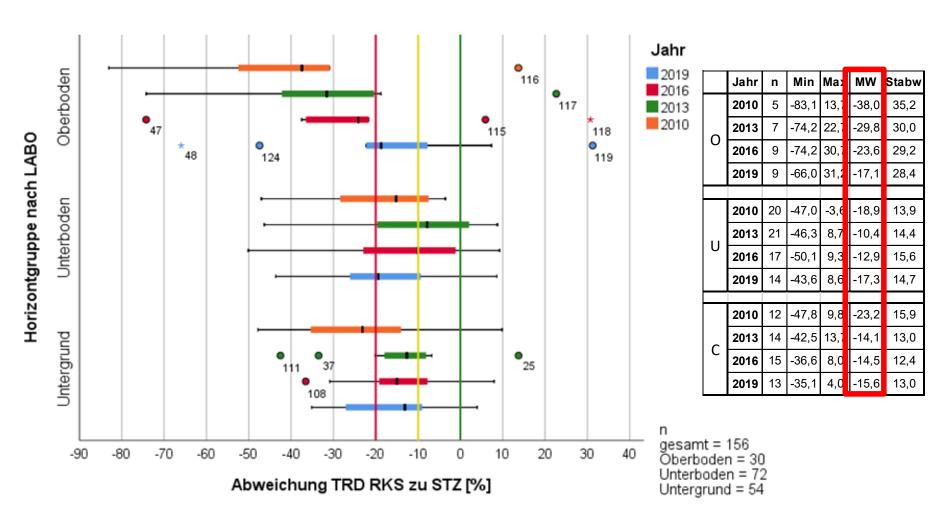


	Jahr	n	Min	Max	MW	Stabw
	2010	7	4,1	12,8	8,7	3,3
0	2013	12	0,5	18,6	7,0	5,1
U	2016	16	0,8	10,2	4,9	2,9
	2019	16	2,5	15,6	7,3	4,2
U	2010	26	0,9	23,5	8,1	5,7
	2013	27	0,2	22,8	6,7	5,3
	2016	24	1,0	23,4	7,3	5,5
	2019	21	2,1	24,5	8,5	7,1
С	2010	14	1,0	20,3	6,6	6,3
	2013	16	1,2	31,4	6,1	7,3
	2016	19	0,8	25,0	5,9	6,8
	2019	17	1,0	26,9	9,0	6,7

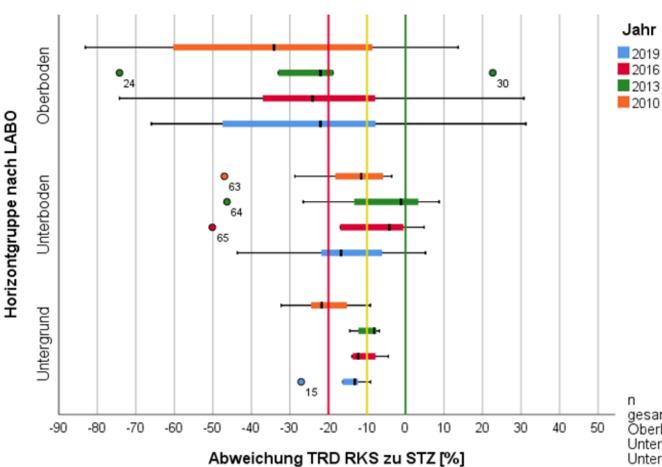
n gesamt = 215 Oberboden = 51 Unterboden = 98 Untergrund = 66



Vergleich der TRD RKS (linear entstaucht) mit "Master"-TRD des STZ (Stechzylinder) vom Profil (alle Horizonte) – Richtigkeit

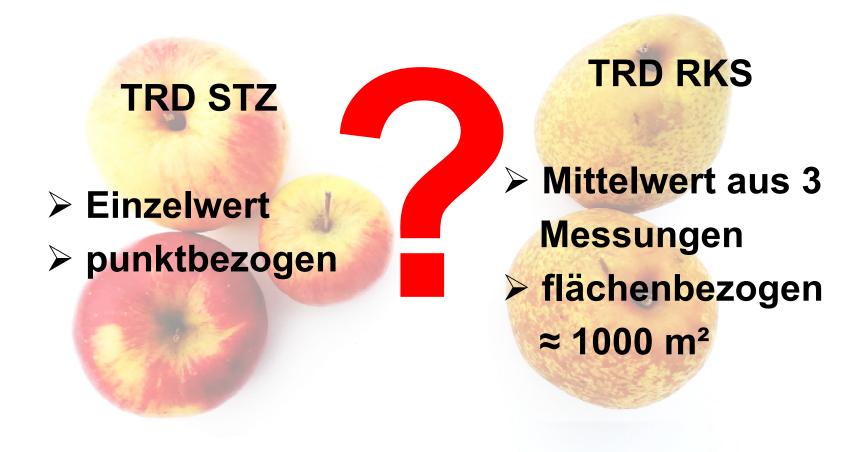


Vergleich der TRD RKS (linear entstaucht) mit "Master"-TRD des STZ vom Profil (Skelett < 25 Vol-% und Stauchung/Streckung +- 5 %) – Richtigkeit



Abweichung der TRD-Werte der RKS (linear entstaucht) vom "Master" STZ (Stechzylinder) Profil (alle Horizonte) – Richtigkeit

Abweichung der TRD-Werte der RKS (linear entstaucht) vom "Master" STZ Profil (Skelett < 25 Vol-% und Stauchung/Streckung +- 5 %) — Richtigkeit

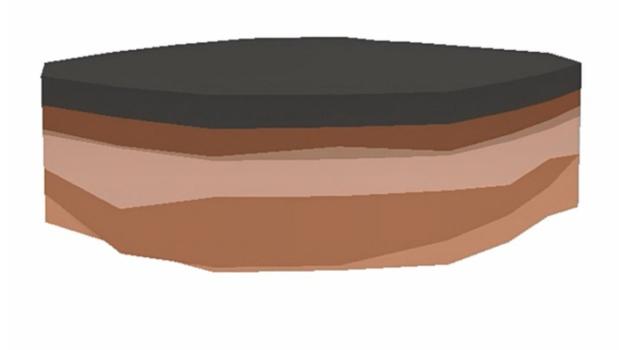


	Jahr	n	Min	Max	MW	Stabw
0	2010	4	-83,1	13,7	-34,4	39,6
	2013	5	-74,2	22,7	-25,1	34,7
	2016	7	-74,2	30,7	-22,5	33,5
	2019	6	-66,0	31,2	-22,3	33,5
U	2010	13	-47,0	-3,6	-15,1	12,8
	2013	10	-46,3	8,7	-7,7	17,0
	2016	10	-50,1	4,8	-9,4	16,0
	2019	8	-43,6	5,2	-16,0	14,8
С	2010	5	-32,3	-9,1	-20,6	8,9
	2013	5	-14,4	-6,8	-9,8	3,3
	2016	4	-13,9	-4,4	-10,7	4,4
	2019	5	-27,1	-9,0	-15,6	6,9

n gesamt = 82 Oberboden = 22 Unterboden =41 Untergrund = 19

Abweichung der TRD-Werte der RKS (linear entstaucht) vom "Master" STZ (Stechzylinder) Profil – "Richtigkeit"?

Botschaften


- Dauerbeobachtung ist mehr als nur OBERBODENdauerbeobachtung und Probenahmemethode der Wahl in der FLÄCHE v.a. für tiefere Horizonte = RKS
- Vorratsberechnungen für die BDF(LÄCHE) besser mit Flächenmittelwert (und mittlerer Mächtigkeit sowie mittlerem Skelettgehalt) als mit einmalig erhobenen punktuellen Profilwerten; Veränderungen in den Konzentrationen werden auch aufwendig in der Fläche ermittelt und nicht nur am Profil.
- Stauchung
 - ist tolerierbar (> 10 % nur bei knapp 16 % aller 1344 Bohrungen)
 - kann unter Aufwand-Nutzen-Abwägungen mit "vertretbarem" Fehler linear korrigiert werden
 - ist abhängig von Wasser-, Corg-Gehalt und Bodenart, aber nicht von Skelettgehalt (Spearman Rangkorrelation)
- ➤ TRD RKS zeigt hohe Reproduzierbarkeit (Variationskoeffizient ≈ 7 %)

Empfehlungen für die TRD-Bestimmung mittels RKS

- ➤ A und O = Qualität der Probenahme in punkto
 - Erfassung der Mächtigkeiten (Horizonte, Stauchung)
 - Minimierung von Materialverlusten bei der Probenahme
- TRD-Bestimmung in der Fläche im Oberboden besser mit STZ, für Unterboden und Untergrund ist RKS Methode der Wahl
- Stauchungsreduzierung:
 - Entfernen des handelsüblichen Mittelstegs der Sonde
 - Probenahme im Frühjahr oder Herbst bei möglichst großer Bodenfeuchte, v.a. bei Sandböden

Bonus: 3-D Modell

