

Zustand der Böden Europas in 2021

The EEA and Eionet model

Eionet: European information and observation network ETC/ULS: European topic centre urban land and soil systems

1800 experts (39 countries, > 400 national institutions)

2022 ff: EIONET Group Land Systems Thematic Group Soil

Expert teams:

- Soil Contamination
- Soil Monitoring (link European Soil Observatory)

Environmental condition assessments: SOER 2020 – themes related to pollution

Air Pollution	Past trends (10-15 years)	Outlooks 2030		
Emissions of air pollutants	Trends show a mixed picture	Developments show a mixed picture		
Concentrations of air pollutants	Improving trends dominate			
Air pollution impacts on human health and wellbeing	Improving trends dominate			
Air pollution and impacts on ecosystems	Trends show a mixed picture			
Chemical Pollution				
Emissions of chemicals	Trends show a mixed picture	Deteriorating developments dominate		
Impacts of chemical pollution on ecosystems				
Chemical pollution and risk to human health and well-being				
Industrial Pollution				
Pollutant emissions from industry	Improving trends dominate	Developments show a mixed picture		
Clean industrial technologies and processes				
Freshwater				
Pollution pressures on water and links to human health	Developments show a mixed picture	Developments show a mixed picture		
Land and Soil				
Soil condition	Deteriorating trends dominate	Deteriorating developments dominate		

Key facts: soil condition and function

- > 60-70% of our soils are unhealthy as a direct result of current management practices
- 21% of agricultural soils with Cd > limit for drinking water; 83% of an EU-wide representative soil sample have residual pesticides
- >2.8 Mio contaminated sites pose risk to drinking water quality, biodiversity and human healthsupports climate change mitigation and adaptation
- ➢ is lost by > 400 km²/yr (net) through land take in the EU between 2012 and 2018
- enables ~ EUR 47 billion/yr worth of ecosystem services of cropland and grasslands in the EU: less than half come from crop production
- > suffers through soil degradation which is costing the EU several tens of billion euros/yr
- profits from halting and reversing current trends of soil degradation, which could generate up to EUR 1.2 trillion per year of economic benefits (globally)

Soil Condition

Chemical degradation (...) increases (SOER 2020)

- Contamination at local level: municipal and industrial waste (37%), industrial emissions and leakages (33%) (Panagos et al. 2013)
- 2.8 million sites with potentially polluting activities; # sites currently under remediation seems to be low
- Some metals such as Cadmium (Cd) and Copper (Cu) are accumulating in arable soils. In 21% of the soils, the Cd concentration in the topsoil solution exceeds the limit for ground water

- There is increasing concern about the storage of **pesticide** residues and metabolites in soils (Silva et al. 2018)
- Nutrient inputs to soils through fertilizers: N inputs at EU-27 exceed critical N inputs in view of the protection of terrestrial or

aquatic ecosystems by approximately 15-20%.

Policy needs for soil monitoring

Thematic Strategy for Soil Protection COM(2006)232

- Proposal for a Soil Framework Directive
- Protection of soil functions and sustainable use of soil:
 - Prevention of soil degradation
 - Restoration of degraded soils
- Four pillars

EU Soil Strategy for 2030 COM(2021) 699

Announcing effort towards a Soil Health Law

- By 2050, all EU soil ecosystems are in healthy condition:
 - Land degradation neutrality
 - GHG removal
 - Reduce nutrient loss
 - Achieve good water quality
- Remediate contaminated sites
- No net land take
- Reduce soil pollution
- Climate resilience

Conceptual basis of the soil strategies (2006/2021)

Surveys and monitoring in Europe

National soil

monitoring sites

(Arrouays et al. 2008)

Forested sites

Non forested sites Unknown occupation

Soil status in Europe? Impact?

Soil Sealing

Erosion

Loss of organic matter

Decline in Biodiversity

Contamination

Compaction

Landslides

Salinization Eutrophication/ Acidification

Biomass production

Storage and Filter

Hosting Biodiversity

Platform for human activities

Provision raw materials

Carbon Pool

Archaeological heritage

Trend is <u>not</u> sufficient to guide where land use change and restaurative measures are needed!

Soil health indicator conceptual framework

*) salinization is not covered by this report

Healthy soils/degraded soils: risk-based thresholds

Soil threat	Land use	Indicator	Thresholds			
Soil organic carbon loss	Agriculture	Deceedance of optimal SOC	Sand: 1,5 (1,0-2,0) [% SOC] Silt: 1,9 (1,4-2,4) Loam and clay: 1,6 (1,0-2,8)			
Nutrient loss	Agriculture	Exceedance of critical levels of mineral nitrogen	NH₃ in air: 1 – 3 [mg NH₃ m⁻³] NO₃ in ground water: 50 [mg NO₃ l⁻¹] N in surface water: 1.0 to 2.5 [mg N l⁻¹]			
	Forest	N limitation based on exceedance of C/N ratio	C/N 20-25 leakage from forests: 1 [mg N l ⁻¹]			
	Agriculture	Deceedance of optimal phosphorus	P concentration 25-35 (optimal P fertility class)			
	Forest	P limitation based on exceedance of N/P ratio	N/P ratio > 18 (coniferous forests) N/P ratio > 25 (deciduous forests)			
Acidification	Agriculture	Critical pH levels	pH < 4.5 - 4.7			
	Forest	Critical inorganic Al levels	base cation/aluminium ratio = 1 (0.5-2.0)			
Soil pollution	Agriculture	Exceedance of screening values for critical risk from heavy metal pollution	Cd, Cu, Pb and Zn by country [mg/kg] (Arsenic still to be added; review of organic pollutants ongoing)			
Soil erosion	Agriculture	Actual rate of soil loss by water erosion	2 [t ha ⁻¹ yr ⁻¹] (soil loss tolerance)			
Soil biodiversity loss		Loss of soil biodiversity (subindicators) to be developed	a) safe minimum standard of conservation b) Operating Ranges (OR) for specific soil animals and microorganisms			
Soil compaction	Agriculture	Harmful subsoil compaction(subindicators)priority (sub) indicators	Saturated hydraulic conductivity (Ks) < 10 [cm/d] Air capacity (AC) < 5 [%]			
Soil sealing		Sealed area per total area	National targets to achieve No Net Land Take			

Example: SOC thresholds

	Definition			
Reference values	Site-specific, typical SOC or SOM values under current management			
	Benchmark SOC values			
nce	 Natural soils (forest soils with low historic disturbance) 25 quartile of the SOC median for permanent grassland 			
erel	 Modelled SOC steady state (25 yrs) for grassland 			
Ref	Optimal SOC content for soil functioning (based on the role of SOC in soil functional PTF, combined with data from long term field experiments)			
Soil vulnerability index based on the SOC/clay ratio				
Reciprocal SOC sequestration potential				
Thresholds from long-term field experiments				
Farmers perspective on deficient SOC				

Indicator "Functional SOC deficiency" for arable land

Climatic regions

Alpine

Boreal

EU25

Atlantic

Continental

Mediterranean

Outlook: Soil erosion functional indicators

Define target soil quality: minimum good status of potential ecosystem service supply **Threshold**: **site-specific limits** for tolerable erosion rates are needed

Ecosystem service	Indicator	Specifi- cation	Status ecosystem service supply					
			0 no	1 very low	2 Iow	3 medium	4 high	5 very high
Crop provision	potential arable yield	Potential yield winter barley [t/ha]	0	≤ 2500	2500 - 2875	2875 - 3250	3250 - 3625	≥ 3625
Water filtration	Nitrate leaching vulnerability	Water exchange rate [%/a]	0	≥ 250	150 - 250	100 - 150	70 - 100	< 70
Water flow regulation	Water storage capacity	potential storable water [mm]	0	< 50	50 - 90	90 - 140	140 - 200	≥ 200
Fresh water provision	Percolation rate	Percolated water [mm/a]	0	< 200	200 to < 250	250 to < 300	300 to < 350	≥ 350

Schlussargumente

- Interdisziplinaere Verbindung von Bodenmonitoring: Luftschadstoffe, Landnutzung (einschl. urbane Boeden, Moore, Kuesten,...), Hydro(geo)logie, Agrarmeteorologie, etc.
- Erfahrungen im Bodenmonitoring Deutschlands: Qualitaetssicherung, Trend, Interpretation
- Aktuelle Fragestellungen in Einzelfaellen in BDF behandelt, allerdings nicht representativ: organische Schadstoffe, Bodenbiodiversitaet, Verbindung Wasserkreislauf
- Herausforderungen: Bewertung im Hinblick auf bodenschutzrelevante Fragestellungen; Regionalisierung; Nutzungseffekte; Klimawandel, Oekosystemzustand
- > Fach- und Institutionen-uebegreifende Kooperationen (Behoerden, Forschung)
- > Ausreichende und stabile **Finanzierung** (Synergieeffekte, Bund-Laender)