

Grundwasser und oberflächennahe Geothermie

Auswirkungen bei Planung und Betrieb

Hannover, 28.10.2010 Dipl.-Ing. M. Wieschemeyer

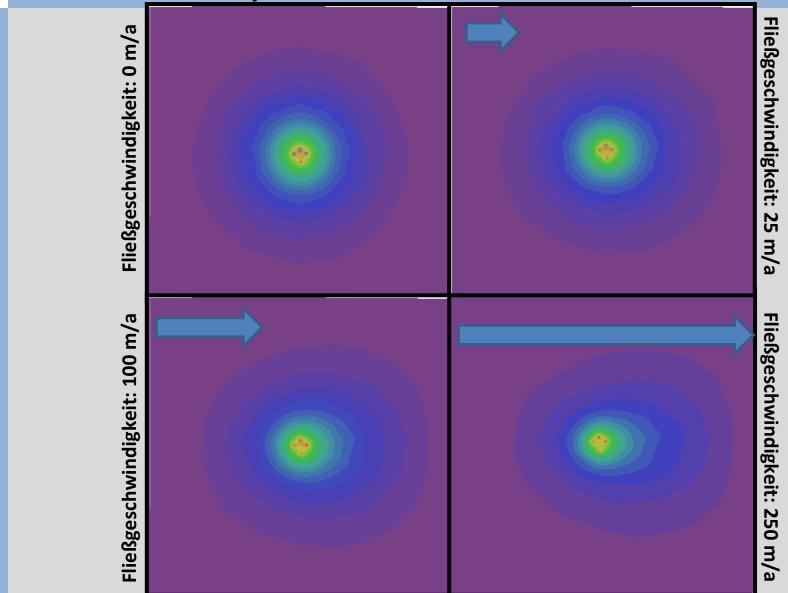
Inhalt

- Grundlagen
- Grundwasserbewegung und Thermal Response Test
- Planungsbeispiele
- Auswirkungen eines EWS-Feldes auf den Aquifer
- Zusammenfassung

Grundlagen

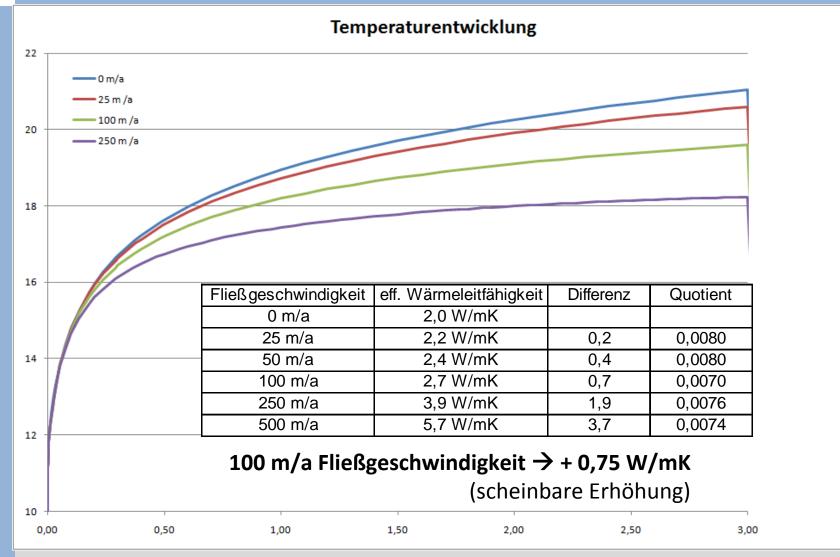
Energiepotentiale im Aquifer

eff. Porosität	Abstands- geschwindigkeit m/a	Delta Temp K	konvektiver Wärmefluss kwh/EWS*a (100 m x 6 m)	geothermischer Wärmefluss kWh/EWS a (6 m x 6 m)	Wärmekapazität kwh/EWS (100 x 6 x 6 m x 2,5 MJ/m³K)
0,2	0	5	0	25	12.500
0,2	1	5	700	25	12.500
0,2	5	5	3.500	25	12.500
0,2	10	5	7.000	25	12.500
0,2	25	5	18.000	25	12.500
0,2	50	5	35000	25	12500
0,2	100	5	70.000	25	12.500
0,2	250	5	180.000	25	12.500
0,2	500	5	350.000	25	12.500
0,2	1000	5	700.000	25	12.500


50 W/m ≈ 10.000 kWh/a ≈ 14 m/a Abstandsgeschwindigkeit

bezogen auf eine 100 m Sonde

Altlastenmanagement • Wasserwirtschaft • Geothermie



Auswirkungen der Grundwasserbewegung auf den Geothermal Response Test

Auswertung der GW-Modell-Response-Test

Altlastenmanagement

Wasserwirtschaft

Planungsbeispiel I

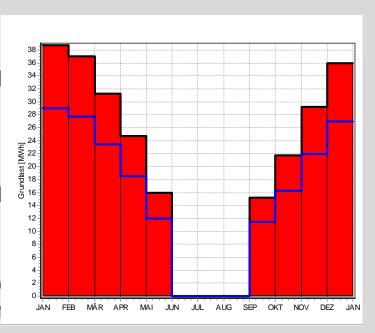
Ziel: Bewertung der Auswirkungen einer zu hoch ausgewerteten Wärmeleitfähigkeit durch Grundwasserbewegung

Planungsbeispiel Heizen:

Wärmebedarf: 250 MW

COP: 4

Abstand: 6 m

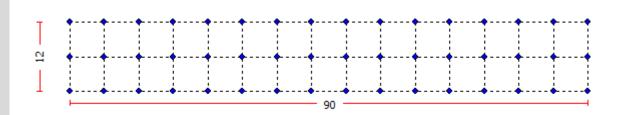

Tiefe: max. 100 m

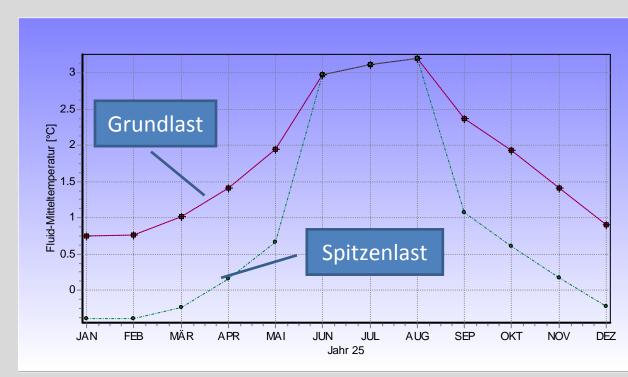
geothermischer Wärmet

Wärmekapazität: 2.500

Wärmeleitfähigkeit: 2,0

Grundwasserfließgeschv
0 m/a, 25 m/a bzw. 50 r



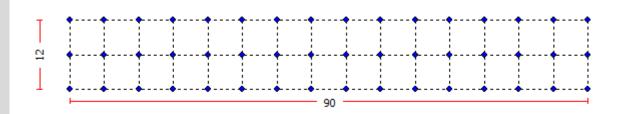


EED-Berechnungen mit einer Wärmeleitfähigkeit von 2,0 W/mK (≜ v_A=0 m/a)

Berechnungsergebnisse:

- •Feld mit 48 EWS
- •Temp. bei Spitzenlast im negativen Bereich (-0,5°C)

Altlastenmanagement


Wasserwirtschaft

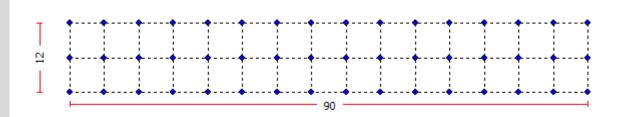


EED-Berechnungen mit einer Wärmeleitfähigkeit von 2,2 W/mK (≜ v_A=25 m/a)

Berechnungsergebnisse:

- •Feld mit 48 EWS
- •Temp. bei Spitzenlast im positiven Bereich (0,6°C)

Altlastenmanagement

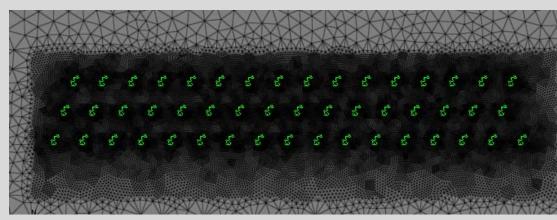

Wasserwirtschaft

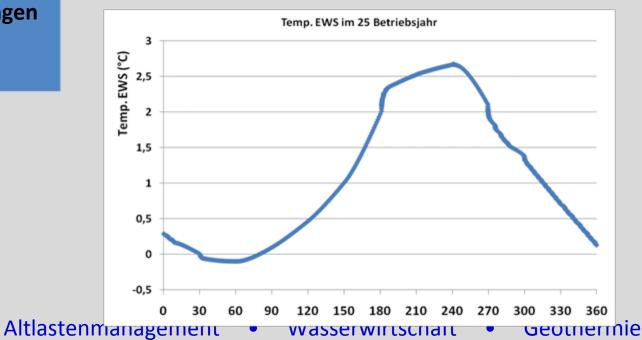
EED-Berechnungen mit einer Wärmeleitfähigkeit von 2,4 W/mK (≜ v_A=50 m/a)

Berechnungsergebnisse:

- •Feld mit 48 EWS
- •Temp. bei Spitzenlast im positiven Bereich (1,1°C)

Altlastenmanagement

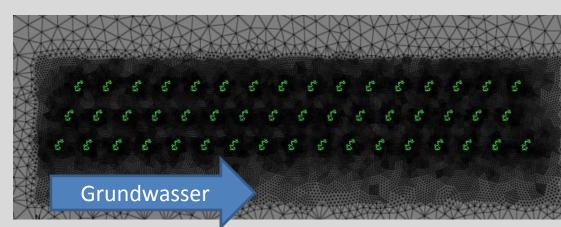

Wasserwirtschaft

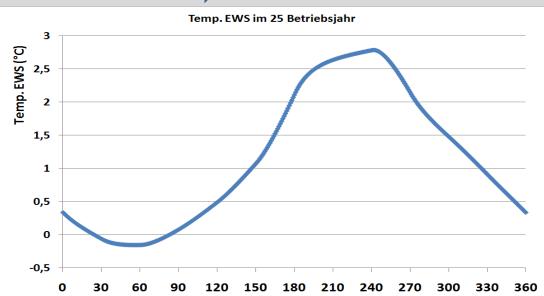


feflow-Berechnungen mit einer Wärmeleitfähigkeit von 2,0 W/mK ohne Grundwasserbewegung

Berechnungsergebnisse:

- •Feld mit 49 EWS
- •Temp. bei Spitzenlast im negativen Bereich (-0,7°C)
- •EED und feflow-Berechnungen stimmen weitestgehend überein

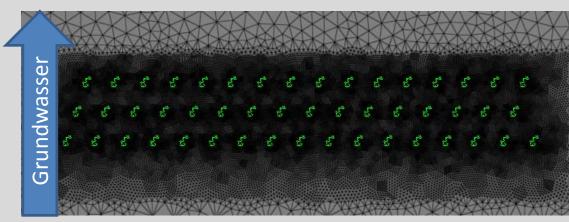


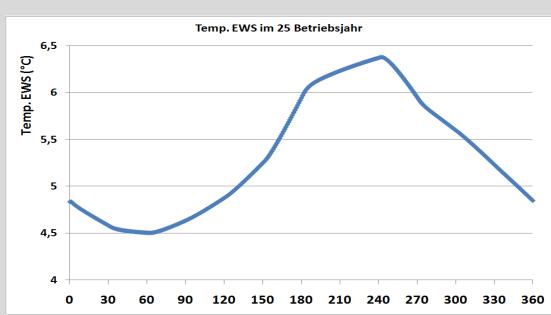


feflow-Berechnungen mit einer Wärmeleitfähigkeit von 2,0 W/mK und Grundwasserbewegung 25 m/a (längs)

Berechnungsergebnisse:

- •Feld mit 49 EWS
- •Temp. bei Spitzenlast im negativen Bereich (-0,2°C)
- •Temp. niedriger als mit EED
- •Konvektiver Wärmetransport mit anströmenden GW geringer als berechneter Wärmetrans. mit EED
- •Erhöhung um 3 EWS notwendig
- → Ergebnis ist "schlechter" als mit EED (2,2 W/mK)





feflow-Berechnungen mit einer Wärmeleitfähigkeit von 2,0 W/mK mit Grundwasserbewegung 50m/a (quer)

Berechnungsergebnisse:

- •Feld mit 49 EWS
- •Temp. bei Spitzenlast im positiven Bereich (4,5°C)
- Die GW-Bewegung führt zu einer Erhöhung der Temp.von 4,5 K gegenüberEED (2W/mK)
- •Reduzierung um 9 EWS möglich
- •Ergebnis ist "viel besser" als mit EED (2,4 W/mK)

Zusammenfassung Planungsbeispiel Heizen

- Auswirkungen der Grundwasserbewegung sind groß
- Bei Ausrichtung des Sondenfeldes längs der GW-Fließrichtung ist eine Überschätzung der Entzugsleistung möglich
 → mehr EWS
- Bei Ausrichtung des Sondenfeldes quer zur GW-Fließrichtung ist eine Unterschätzung der Entzugsleistung möglich
 → weniger EWS
- Bestimmung der Fließgeschwindigkeit nur bedingt bzw. mit hohem Mehraufwand möglich Erste Ansätze über:
 - eGRT (Abschätzung über Auskühlung)
 - Partikel Tracking im Bohrloch (aufwendig, teuer)
 - Abschätzung (mit hohen Unsicherheiten verbunden)

→ Forschung notwendig

Planungsbeispiel II

Planungsbeispiel Heizen & Kühlen:

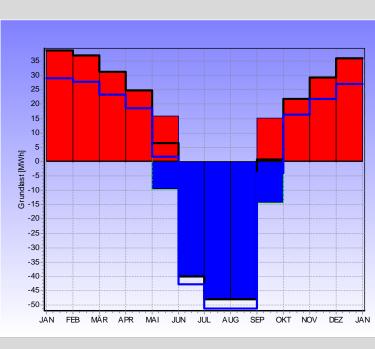
• Wärmebedarf: 250 MWh/a

• Kältebedarf: 160 MWh/a

• COP Heizen: 4

COP Kühlen: 15

Abstand: 6 m

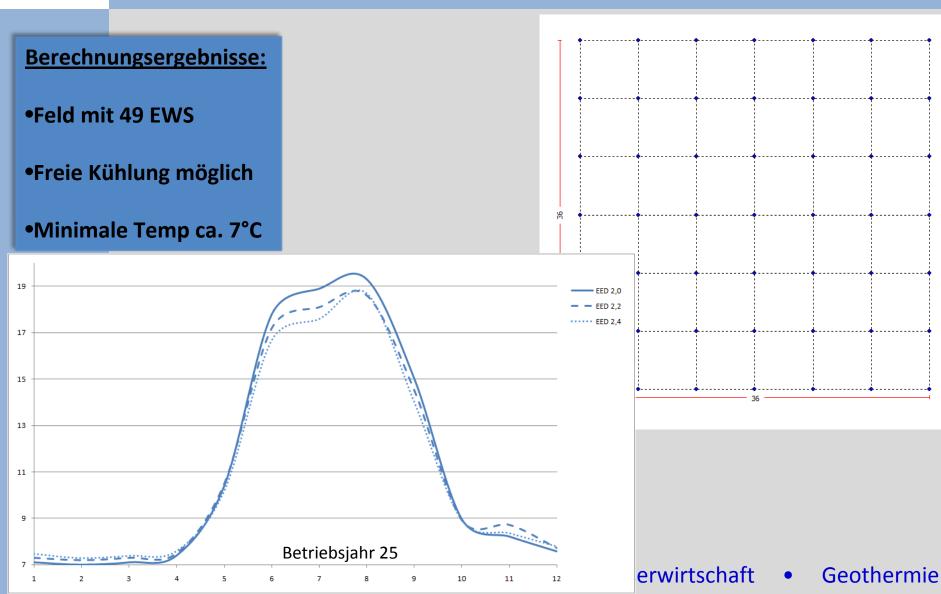

Tiefe: max. 100 m

geothermischer Wärme

Wärmekapazität: 2.500

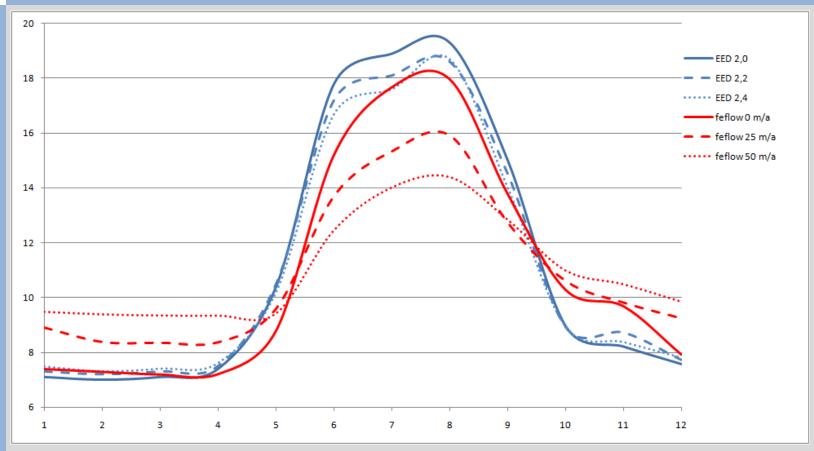
Wärmeleitfähigkeit: 2,0

Grundwasserfließgesch0 m/a, 25 m/a und 50 r

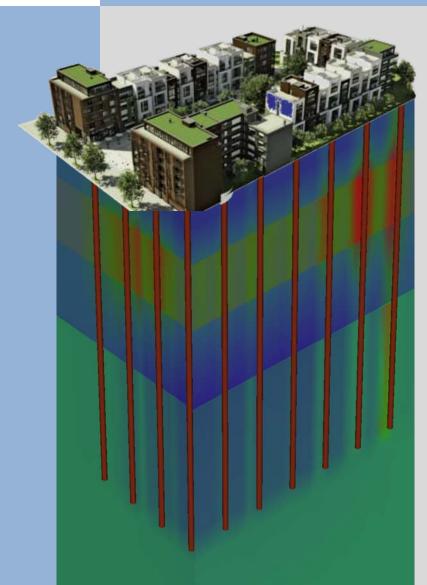


Altlastenmanagement

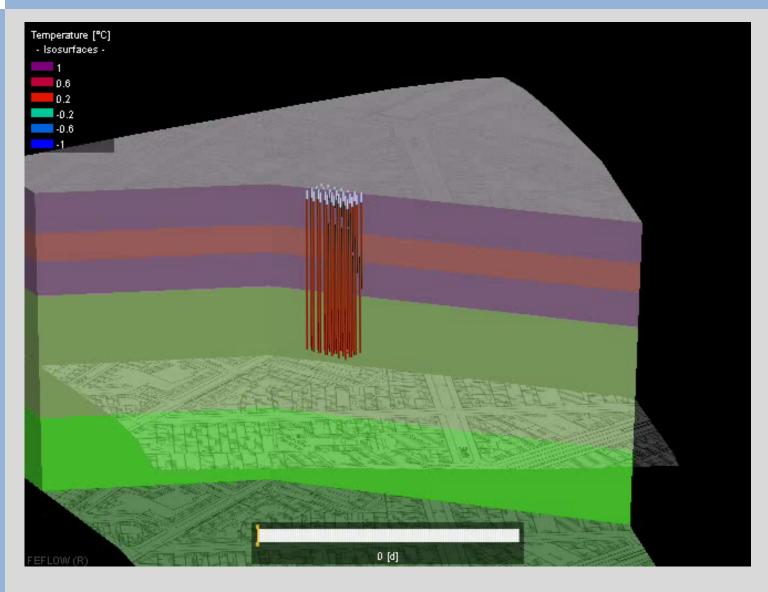
Wasserwirtschaft



EED-Berechnungen mit unterschiedlichen Wärmeleitfähigkeiten


Vergleich EED und feflow

→ Grundwasserbewegung flacht die Temperaturamplitude ab


Auswirkungen auf den Grundwasserkörper

- Wohngebäudekomplex
- bivalente Anlage
- Geothermie zur Grundlastabdeckung und freien Kühlung
- Sondenanzahl: 28
- Anordnung: offenes Rechteck
- Wärmebedarf: 280 MWh/a
- Kältebedarf: 200 MWh/a
- Anforderung des Senates 1K Abweichung an der Grundstücksgrenze
- Nachweis mit Wärmetransportmodell

Auswirkungen auf den Grundwasserkörper

Zusammenfassung

- Die Auswirkungen der Grundwasserbewegung werden vielfach unterschätzt
- Analytische Berechnungen (z.B. EED) reichen teilweise nicht aus
- Mit numerischen Grundwassermodellen lassen sich häufig Kosten sparen
- Die Bewertung der Auswirkungen auf die Nachbargrundstücke gewinnt zunehmend an Bedeutung
- Es müssen Methoden zur Bestimmung der Grundwasserfließgeschwindigkeit entwickelt werden

Kontakt

M&P Geonova GmbH

M&P Geonova GmbH

Joachimstraße 1 30159 Hannover

Telefon: +49 (0) 5 11/12 35 59 - 70 Telefax: +49 (0) 5 11/12 35 59 - 55 hannover@mup-geonova.de

M&P Geonova GmbH

Westerbreite 7 49084 Osnabrück

Telefon: +49 (0)5 41/977 88 00 Telefax: +49 (0)5 41/977 88 01 osnabrueck@mup-geonova.de

M&P Geonova GmbH

Nordstraße 10 04416 Markkleeberg

Telefon: +49 (0) 3 41/24 34 121 Telefax: +49 (0) 3 41/24 34 122 leipzig@mup-geonova.de

