

Klimawandel in Niedersachsen

Einfluss des Klimawandels auf die Oberflächengewässer

Prof. Dr.-Ing. Joseph Hölscher

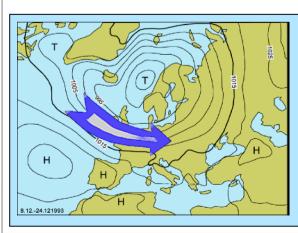
Dipl.-Geogr. Uwe Petry

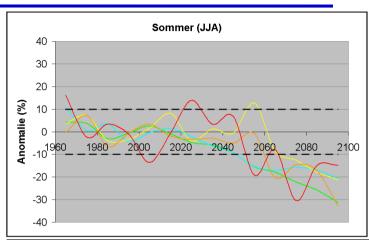
Dipl.-Geogr. Agnes Richmann

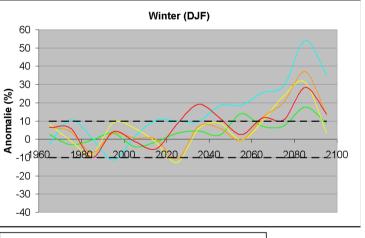
Niedersächsischer Landesbetrieb

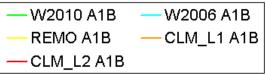
für Wasserwirtschaft, Küsten- und Naturschutz

Gliederung


- 1) Wirkung des Klimawandels auf den Oberflächenabfluss
 - Einflüsse und Indikatoren
- 2) Forschungsprojekte
 - aktuelle Arbeiten des NLWKN (Zwischenergebnisse)
- 3) Mögliche Konsequenzen für die Wasserwirtschaft
 - ➤ Hoch- / Niedrigwasser, Siedlungswasserwirtschaft
- 4) Ausblick




Wirkung des Klimawandels auf Niederschläge


- ➤ Jahres-Niederschlagsmenge konstant
- > zeitliche Verteilung ändert sich:
 - erhöhte Niederschläge im Winter (+10-30 %)
 - weniger Niederschläge im Sommer (bis -25 %)
- Zunahme von Extremereignissen
 - Häufigkeit
 - Intensität

Großwetterlage "Westlage zyklonal": Das Wetter, das den Regen bringt. Häufung von 1881 bis 1989 (KLIWA, 2006)

Forschungsprojekte (NLWKN)

Die Herausforderung des Klimawandels ist erkannt!

Akutelle Projekte des NLWKN:

KLIFF - KLIFWA, KLIFF - A-Küst, KliBiW

Zielsetzungen (Intention):

- Schaffung einer fundierten Datenbasis
- Entwicklung neuer Analyse-Methoden
- Übertragung Erkenntnisse in fachliche Praxis (GLD, HWRM-RL)
- Entwicklung spezifischer Anpassungsstrategien

Forschungsprojekt - KLIFF/ A-Küst

Klimafolgenforschung MWK:

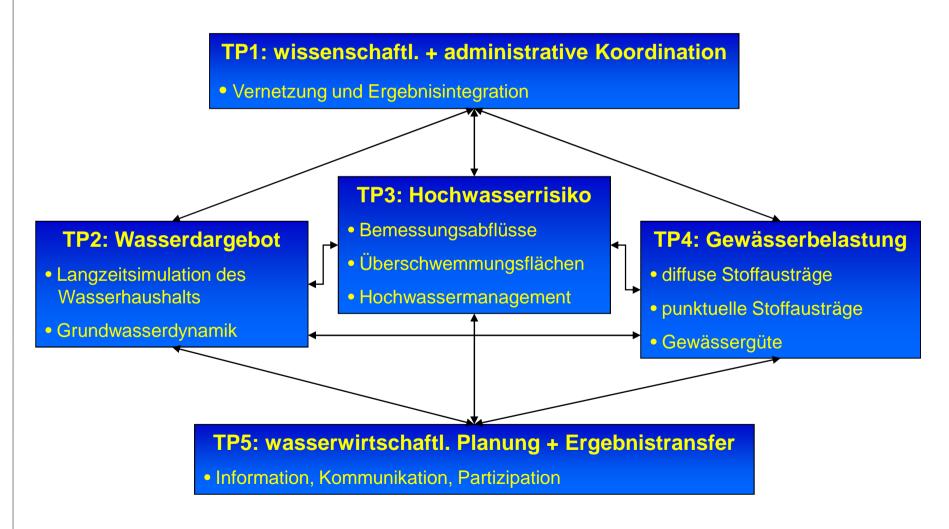
"Veränderliches Küstenklima – Evaluierung von Anpassungsstrategien im Küstenschutz – (A-KÜST)"

Themenstellung:

- flexible Anpassungsstrategien bei unzureichend genauen Prognosen zum Meereswasseranstieg
- Auswirkung auf Biozönose und kommerzielle Nutzungen

Ziele:

- bedarfsgerechte regionale Datenbasis von Klimaänderungsfolgen schaffen
- Strategien für Insel- und Küstenschutz konkretisieren
- gesellschaftliche Meinungsbildung erforschen

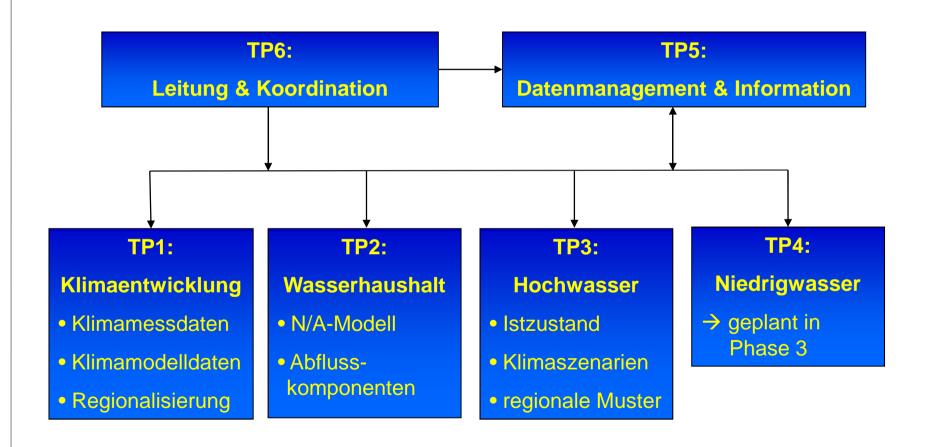

Forschungsprojekt - KLIFF/ KLIFWA

Name:	Auswirkungen von Klimaänderungen auf Wasserdargebot, Hochwasserrisiko und Gewässerbelastung in Nds.
Förderung:	Niedersächsisches Ministerium für Wissenschaft und Kultur
Laufzeit:	5 Jahre (ab 2009)
Leitung:	Leibniz Universität Hannover (Prof. DrIng. U. Haberlandt)
Partner:	TU Braunschweig, Uni Göttingen, NLWKN, Hartung & Partner Braunschweig

Forschungsprojekt - KLIFF/ KLIFWA

Forschungsprojekt - KLIFF/ KLIFWA

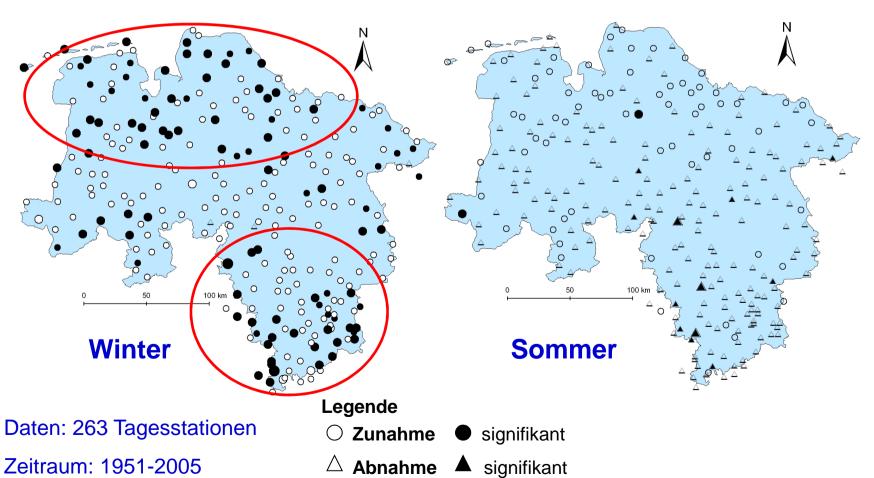
Projektziel:	 Entwicklung neuer Methoden (Prognoseunsicherheit) Häufigkeiten extremer Ereignisse Integrierte Analyse der Folgen des Klimawandels (Wasserwirtschaft, Naturschutz, Landwirtschaft, Tourismus, Raumordnung)
Projektansatz:	 Entwicklung neuer methodischer Ansätze Modell basierte Analyse von Klimafolgen unter Berücksichtigung von Unsicherheiten Weiter- und Neuentwicklung deterministischer und statistischer hydrologischer Methoden


Forschungsprojekt - KliBiW

Name:	Globaler Klimawandel - Wasserwirtschaftliche Folgenabschätzung für das Binnenland -
Förderung:	Niedersächsisches Ministerium für Umwelt und Klimaschutz
Geplante Laufzeit:	Phase 1: 2008 – 2009 Phase 2: 2010 – 2012
Leitung:	NLWKN (Prof. DrIng. J. Hölscher)
Partner:	Uni Hannover, TU Braunschweig, (HWW GmbH)

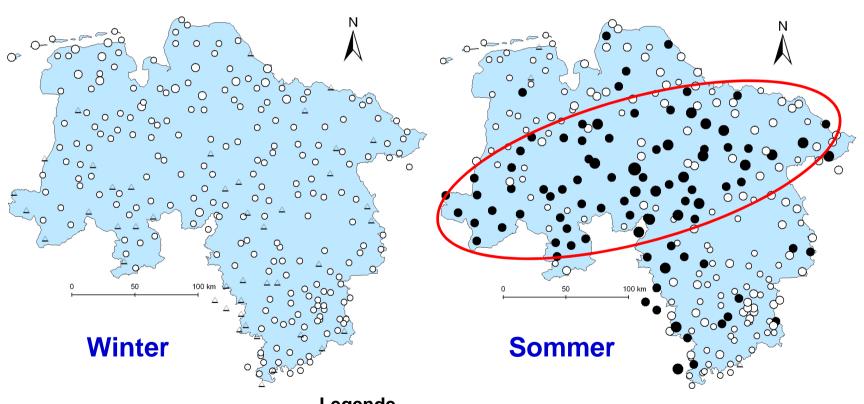
Forschungsprojekt - KliBiW

Forschungsprojekt - KliBiW


Projektziel:	 Regionalisierung + Bewertung wasserwirtschaftlicher Folgen Beratung der Entscheidungsträger Erweiterung der Methodenkompetenz des GLD
Projektansatz:	Test und Übertragung bekannter Methoden • Extremwertstatistik, Geostatistik • Erweiterte Zeitreihenanalyse • Wasserhaushaltmodellierung

Entwicklung der Niederschläge (KliBiW)

(Trend 90%-Quantil der Niederschläge > 1mm/d):



Entwicklung Trockenzeiten (KliBiW)

(Trend max. Anzahl aufeinanderfolgender Trockentage):

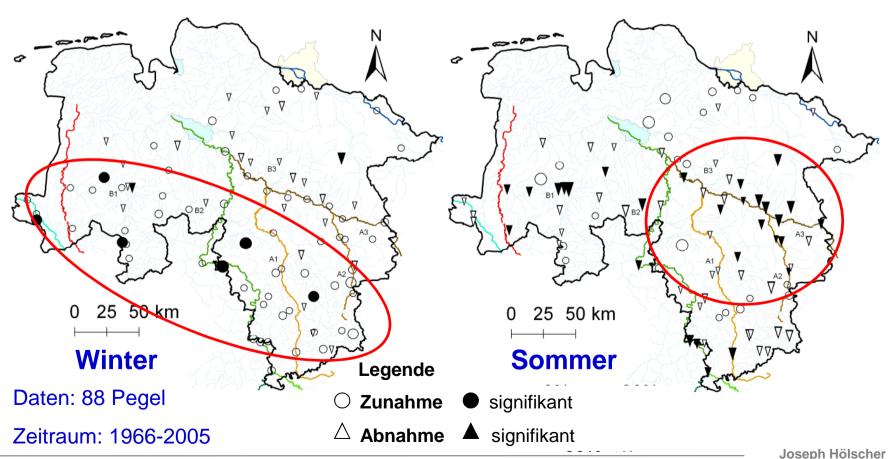
Daten: 263 Tagesstationen

Zeitraum: 1951-2005

Legende

Zunahme ■ signifikant

△ Abnahme ▲


signifikant

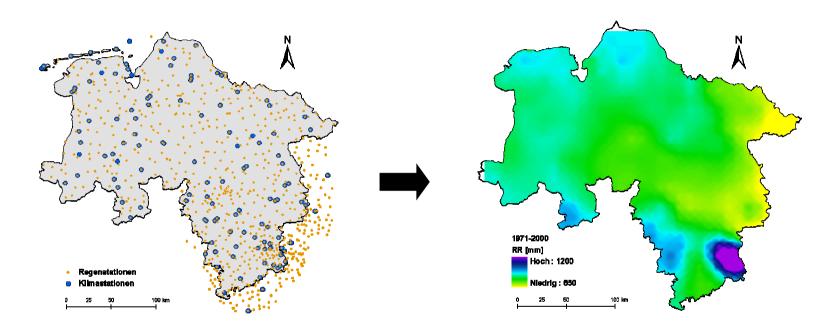
Entwicklung (?) der Abflussscheitel (KliBiW)

(Trend Abflussscheitelwerte):

Forschungsprojekte in Niedersachsen (KliBiW)

(Extrem-)Niederschläge (1951-2005):

- Zunahme im Winter (größte Signifikanz), Frühjahr und Herbst; Abnahme im Sommer
- Zunahme vor allem im Norden / Süden von Nds signifikant;
 Abnahme vor allem in der Mitte von Nds


Hochwasser-Abflussscheitel (1966-2005):

- meist negative Trends im Sommer (ca. 1/3 aller Pegel signifikant); meist positive Trends im Winter (ca. 7% der Pegel signifikant)
- kaum räumliche Muster (Tendenz: positiver Trend im Süden Nds, negativer Trend im Einzugsgebiet der Aller)
- > Problem: Quantifizierung anthropogener Einflüsse!!

Regionalisierung von Klimadaten (KliBiW)

Interpolation von 771 RR-Stationen und 123 Klimastationen auf 1x1 km Raster;

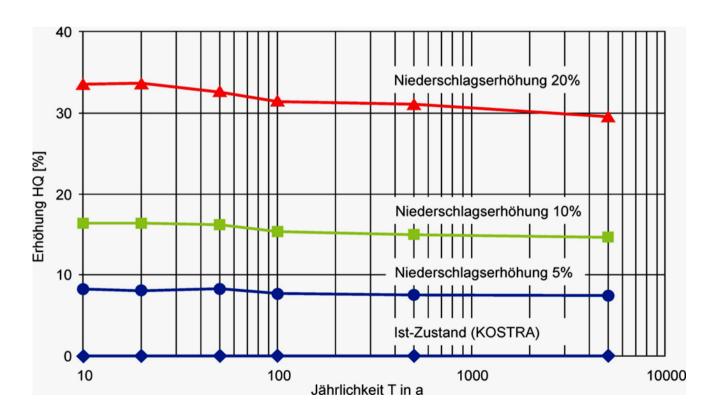
Zeitraum 1951 – 2009 (Tageswerte, s.o.);

Klimaprojektionen 2000 - 2100

Temperatur, Niederschlag, Sonnenschein, Luftfeuchte, Windgeschwindigkeit

Konsequenzen für die Wasserwirtschaft - Hochwasser

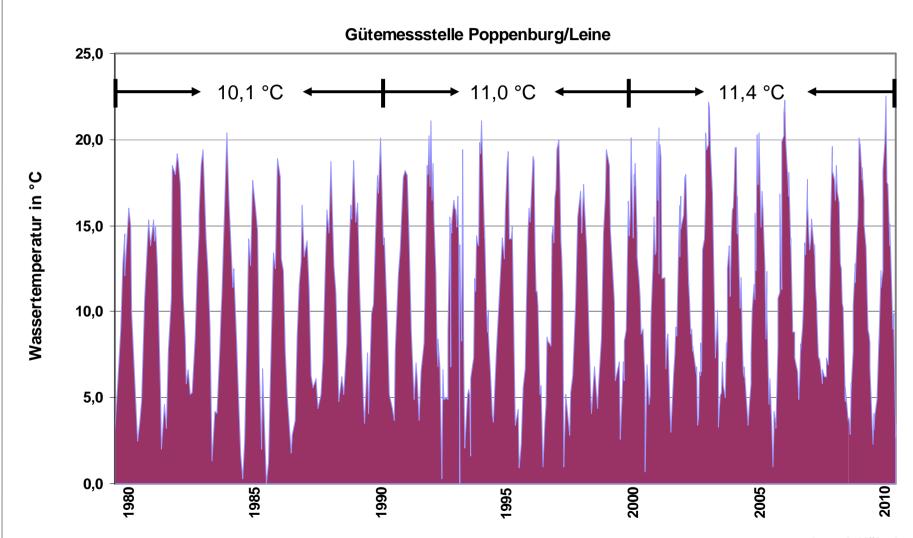
Abflussregime der Fließgewässer (Hochwasserabfluss):


- Zunahme der mittleren und kleinen Hochwasser (im Winter)
 - häufigere und länger andauernde regenreiche Wetterlagen
- Aussagen zur Entwicklung konvektiver Starkniederschlägen (Sommer) schwer quantifizierbar
- Hochwasserrisikomanagement:
 - Hochwasserbemessung (Statistik + zeitliche + räumliche Kausalitäten)
 - flexible Schutzmaßnahmen / -strategien entwickeln (no regret)
 - angepasste Nutzungsweisen + Speicherbewirtschaftung
 - Vorsorgeprinzip (Kommunikation, Verhalten, Bau- / Raumplanung)
 - frühzeitige Information (Vorhersage, Katastrophenmanagement)

Konsequenzen für die Wasserwirtschaft - Hochwasser

Erhöhung der Hochwasserscheitel, Lastfall "Klimaänderung" (KLIWA, 2006):

heutiges HQ(100) entspricht bei 20 % N-Erhöhung einem HQ(20) – HQ(25) in der Zukunft


Konsequenzen für die Wasserwirtschaft - Niedrigwasser

- Verminderte Niedrigwasserabflüsse im Sommer
 - geringe Niederschläge
 - höhere Verdunstung
- erhöhter Wasserbedarf
 - Bewässerung, Kühlwasser, Trinkwasser
- Niedrigwassermanagement
 - chemische Gewässerbeschaffenheit
 - Gewässerbiozönose (Flora und Fauna)
 - Entnahme- bzw. Einleiterregelung (z.B. Salzplan)
 - Wärmelast (Industrie, Energiegewinnung)
 - Schifffahrt
 - Wasserkraft

Entwicklung der Wassertemperatur in der Leine

Konsequenzen für die Siedlungswasserwirtschaft

- Zunahme von Starkniederschlägen
- Überstau- und Überflutungssicherheit von Entwässerungssystemen
 - Planung und Bemessung
 - Betrieb
- Generalentwässerungsplanung → Risikomanagement der Kommunen
- Emissionen durch Niederschlag bedingte Siedlungsabflüsse
 - Einleitungsstandards in Gewässer
 - Grundwasserbelastungen durch Überstau defekter Kanalisationen
- Sicherung der Wasserversorgung

Ausblick

- Verschärfung (räumlich differenziert) der Hochwasserproblematik im Winter
- Intensität und Häufigkeit von Flash-Floods im Sommer
- Niedrigwasser im Sommer
- Angepasstes Hoch- / Niedrigwassermanagement ist notwendig (flexible + no regret)
- Datenbasis und Methodenkompetenz im GLD
- Vorsorge (Information, Planung, Bau, Verhalten) unabdingbar

Klimawandel in Niedersachsen

Vielen Dank für Ihre Aufmerksamkeit

Kontakt:

joseph.hoelscher@nlwkn-hi.niedersachsen.de www.nlwkn.niedersachsen.de