Untertage-Erdgasspeicherung in Deutschland

Underground Gas Storage in Germany

Von R. SEDLACEK*

er »Erdölgeologische Dienst« des Niedersächsischen Landesamtes für Bodenforschung

Bei der industriellen Nutzung des tieferen Untergrundes, hierzu gehören u. a. auch die Erdöl-Erdgas-Exploration und -Produktion, die Versenkung bergbaulicher Prozesswässer und die Untertage-Erdgasspeicherung, fallen eine Vielzahl von Daten an. Mit dem Bundesberggesetz und dem Lagerstättengesetz als maßgebliche Ordnungsrahmen werden diese Daten im Zuge der regelmäßigen Berichterstattung von der Industrie entweder an die Bergbehörde oder an den jeweiligen Geologischen Dienst der Bundesländer übermittelt. Für Niedersachsen sind dies das Landesbergamt in Clausthal-Zellerfeld (LBA) sowie das Niedersächsische Landesamt für Bodenforschung (NLfB) in Hannover. Beide stehen unter der Dienstaufsicht des Wirtschaftsministeriums. Durch ein Verwaltungsabkommen nimmt das LBA seine Tätigkeit gleichzeitig als Genehmigungsund Aufsichtsbehörde für Bremen, Hamburg und Schleswig-Holstein wahr. In den anderen Bundesländern existieren entsprechende Genehmigungs(berg)behörden.

Die Tätigkeit eines »Erdölgeologischen Dienstes« wird in Niedersachsen vom Referat N 3.06 »Kohlenwasserstoffgeologie« im NLfB wahrgenommen. Abbildung 1 zeigt zusammenfassend die drei Säulen, auf den diese Tätigkeit beruht: Neben der Datenerhebung und -auswertung nach Lagerstättengesetz (linke Säule, hierzu gehört auch die Bedienung von Datenbanken) werden im Erdölgeologischen Austausch (mittlere Säule, Gründung im Jahr 1934) Explorationsdaten der beteiligten Firmen hereingeholt, homogenisiert, datenbankfähig verschlüsselt, qualitätsgeprüft, archiviert und den Firmen im Rücklauf mit einer Softwareplattform bereitgestellt. Die dritte (rechte) Säule stellt, in Fortsetzung der von 1948 bis 1999 Bund-Länder-finanzierten Aufgaben auf den Gebieten der Kohlenwasserstoffgeologie in Deutschland, den seit dem Jahr

2000 existierenden »Verbund Kohlenwasserstoffgeologie« dar. Hier wurden unter der Anforderung, dass Niedersachsen diese Aufgaben wegen der Konzentration der KW-Aktivitäten auch weiterhin beratend wahrnehmen sollte, bilaterale Verträge mit den in Abbildung 1 dargestellten Bundesländern geschlossen. Kern der Zusammenarbeit sind alle KW-relevanten Daten und ihre Nutzung für Beratungszwecke im Umfeld industrieller Anwendung.

edeutung von erdölgeologischen Nachweis- und Fachdaten, Situation in der Bundesrepublik Deutschland

Die bei Aufsuchung, Gewinnung und Speicherung von Kohlenwasserstoffen gewonnenen Daten gehören nach Privatrecht der Person (Gesellschaft), die diese Daten gewonnen, d. h. finanziert hat. Der Zugang der Geologischen Dienste und Bergbehörden zu diesen Fachdaten (z. B. Seismikmessungen, petrophysikalische Bohrlochmessungen, Daten, Studienergebnisse, Simulationen, usw.) ergibt sich u. a. aufgrund der angegebenen gesetzlichen Grundlagen. Der Zugang für Dritte ist nur möglich, wenn der Eigentümer diese Daten freigibt. Mit der Freigabe einhergehend erfolgt häufig eine bilaterale Einigung zwischen Eigentümer und Nachnutzer über den hierfür zu entgeltenden Wert der Mess- und Fachdaten.

Damit in Deutschland der Eigentümer und der Nachnutzer von Daten zueinander kommen und die Eigentümer bei der Datenrecherche entlastet werden, sind die Geologischen Dienste Anlaufstelle und »Makler« der Informationen bzw. der Inhalte der Nachweisdaten. »Wer ist der Eigentümer von Daten in einem bestimmten Gebiet? Wer hat was, wann, wo durchgeführt?« sind dabei die Kernfragen dieser Tätigkeit. Hierzu gehören Anfragen im Rahmen von Explorationsvorhaben von Firmen aus dem Inund Ausland, Nachnutzer von KW-Daten für Gewinnung geothermischer Energie, Gasversorger auf der Suche nach Speicherstandorten u. a. Themen. Wichtige Arbeitsgrundlage mit zunehmender Bedeutung für die beschriebene »klassische« Tätigkeit eines Erdölgeologischen Dienstes im Sinne einer Wirtschaftsförderung sind Geografische Informationsysteme (GIS). Sie ermöglichen eine Visualisierung und Zusammenführung von Punkt-, Linien- und Flächendaten des tieferen Untergrundes in Themenkarten. Abgegrenzt von den Nachweisdaten sind die Fachdaten zu sehen. Nur im Falle einer Freigabe bzw. einer Nachnutzungsverfügung durch den Eigentümer kann das NLfB die nach Lagerstättengesetz im Archiv verfügbaren Fachdaten unter Vorlage der Freigabegenehmigung an berechtigte Dritte herausgeben. Die beschriebene rechtliche Situati-

Abb. 1 Referat Kohlenwasserstoffgeologie im Niedersächsischen Landesamt für Bodenforschung. Aufgabengebiete

0179-3187/03/11 © 2003 URBAN-VERLAG Hamburg/Wien GmbH

^{*}Dipl.-Ing. Robert Sedlacek, Niedersächsisches Landesamt für Bodenforschung, Referat N 3.06 »Kohlenwasserstoffgeologie«, Hannover (E-mail: Robert.Sedlacek@nlfb.de)

on ist für Deutschland hinsichtlich der Verfügbarkeit von Fach(Mess)daten anders als in vielen anderen Staaten.

In Nordamerika z. B. sind KW-Daten nach einer bestimmten Zeit frei und können in den staatlichen Archiven (z. B. des USGS) eingesehen werden. Andere europäische Staaten haben ähnliche Regelungen. Eine Vielzahl von Consultants gestaltet mit diesen Daten ihre Tätigkeit. Andere Staaten trennen ihre Freigabe in On- und Offshore-Daten und haben für »confidential data« eigene Abteilungen, die Freigabe und Zugang regeln (z. B. Niederlande).

enndaten zur Untertage-Erdgasspeicherung in Deutschland

Das Niedersächsische Landesamt für Bodenforschung (NLfB) veröffentlicht in der Novemberausgabe dieser Zeitschrift jährlich die relevanten Daten zur Untertagespeicherung in Deutschland. Im Sinne der zuvor beschriebenen Abgrenzung von Nachweis- und Fachdaten handelt es sich hier um die Kategorie von Nachweisdaten. Die speicherspezifischen Angaben wurden im Rahmen der routinemäßigen Abfragerunde von den Speichergesellschaften an das NLfB übermittelt und für die jährliche Berichterstattung vom NLfB für den Stichtag 31. 12. 2002 ausgewertet.

Da sowohl das Landesbergamt in Clausthal-Zellerfeld als auch das NLfB speicherrelevante Daten erfassen und für unterschiedliche Zielsetzungen auswerten, wird aus pragmatischen Gründen derzeit über eine künftige gemeinsame Abfrage nachgedacht.

Im Umfeld eines steigenden Erdgasaufkommens sowie der eingeleiteten Liberalisierung des deutschen Erdgasmarktes haben Daten über die Untertage-Erdgasspeicher in Deutschland eine wachsende Bedeutung für strategische Überlegungen und Planungen zur nationalen Erdgasversorgung.

Nutzer und Nachfrager sind Erdöl- und Erdgasversorger, Ingenieurbüros, Beratergesellschaften sowie die Speicherunternehmen.

Das NLfB veröffentlicht diese Daten auch in seinem Erdöl-Erdgas-Jahresbericht (Web-Adressen siehe am Ende dieses Artikels) und nutzt sie im Rahmen von bergbehördlichen Genehmigungsverfahren regelmäßig als ergänzende Information in Gutachten und Stellungnahmen zur bergbaulichen (geologisch-lagerstättentechnischen) cherheit von Erdgas(poren)speichern. Das o. g. Referat N 3.06 »Kohlenwasserstoffgeologie« im NLfB ist dabei neben der oben beschriebenen traditionellen Tätigkeit eines »Erdölgeologischen Dienstes« (Exploration, Produktion) auch in Projekten zur Erdgasspeicherung in Aquiferen und ehemaligen Erdöl- und Erdgaslagerstätten tätig. Von staatlicher Seite erfolgt die geologische Begleitung von Speicherprojekten in Salzkavernen dabei für die zuständigen Bergbehörden durch die Geologischen Dienste der einzelnen Bundesländer.

rundzüge der Erdgasspeicherung, nationale Bedeutung

In einem weit entwickelten Erdgasmarkt wie in Deutschland, bei dem sowohl die heimische Erdgasförderung als auch die Importe aus mehreren Ländern zur Deckung des Bedarfes dienen, stellt die Untertage-Erdgasspeicherung ein elementares Bindeglied zwischen Erdgasproduktion und Erdgasvermarktung dar. Die heimische Förderung von Erdgas unterliegt im Jahresverlauf begrenzten, technisch bedingten Schwankungen. Erdgas-Aufbereitungsanlagen sind für bestimmte Förderleistungen konzipiert. Die durch Förderanlagen (Förderstrang, Wasserabscheider, Heater) durchgesetzten Gasmengen können nur in begrenztem Umfang nach oben oder unten verändert werden. Die an Verträge gebundenen Importmengen für Erdgas orientieren sich an der jahreszeitlich unterschiedlichen - in ihrer tatsächlich eintretenden Höhe nicht genau vorhersagbaren - Nachfrage der einzelnen Energieversorger. Diese Nachfrage ändert sich mit der saisonalen Temperatur und gleichzeitig im Tageszyklus. In kalten Perioden werden tagsüber (Verbrauch in Industrie und Haushalten) Spitzenverbräuche, im Sommer dagegen erheblich niedrigere Verbräuche erzielt. In einer Großstadt wie Berlin können Bedarfsspitzen im Winter das Fünfzehnfache des Sommerbedarfes betragen. Da das Erdgasangebot (Importe und Eigenförderung) über eine bestimmte Periode konstant ist und sich der Erdgasverbrauch temperaturabhängig saisonal und tageszeitlich ändert, ist zwischen Versorger und Verbraucher ein Ausgleichsvolumen durch Untertage-Erdgasspeicher erforderlich. Man unterscheidet dabei zwischen Poren- und Kavernenspeichern, die in der Regel in warmen Monaten (bei reduzierter Gasnachfrage) befüllt und bei kalter Witterung zur Deckung von Mehrbedarf entleert werden. Grundsätzlich werden Porenspeicher zur saisonalen Grundlastabdeckung und Kavernenspeicher besonders für Spitzenlastabdeckungen genutzt. Der tatsächliche Einsatz hängt von vielerlei Faktoren ab, wie von z. B. Liefer- und Abnahmeverträgen, Einbindung in das Ferngasnetz, Gaspreisen, Förderpotenzial heimischer Lagerstätten, usw. Ein wichtiger Punkt bei Kavernenspeichern ist die optimierte Fahrweise bei der Befüllung und Entnahme sowie das resultierende Druckspiel. Dabei führt ein über lange Zeiträume zu tief abgesenkter Speicherdruck zu einer stärkeren Volumenverringerung (Konvergenz) des gesolten Hohlraumes, die nicht reversibel ist. Bei Porenspeichern stehen dagegen lagerstättentechnische Aspekte wie Förderpotenzial der Sonden, Zufluss von Lagerstättenwasser u. a. Faktoren im Vordergrund. Speicher, die unter spekulativen Aspekten oder zur Bezugsoptimierung eingesetzt werden, können auch abweichend von der »klassischen« Fahrweise betrieben werden, d. h. auch in Winterperioden ist eine temporäre Einspeicherung möglich, die bis zu Mehrfachumschlägen des Speichervolumens führen kann (Beispiel USA).

Das maximal zulässige Gesamtvolumen der Speicher stellt die Summe von Arbeitsgasund Kissengasvolumen dar. Das Arbeitsgasvolumen ist das im Jahresverlauf eingespeiste oder entnommene maximale (bewegte) Gasvolumen. Das Kissengas stellt das Energiepolster eines Speichers dar und soll über einen möglichst langen Zeitraum konstant hohe Entnahmeraten sicherstellen. Das Arbeitsgasvolumen und die maximale Entnahmerate sind ein Maßstab für die Leistungsfähigkeit eines Speichers. Je größer der Anteil des maximalen Arbeitsgasvolumens am Erdgasaufkommen ist und je schneller es bewegt (ein- und ausgespeichert) werden kann, desto leistungsfähiger ist die nationale Erdgas- und Energieversorgung. Hierbei müssen auch strategische Risiken, wie z. B. der Ausfall eines Versorgers, durch Gasspeicher abgefangen werden kön-

rdgas als Primärenergieträger, Aufkommen und Verbrauch

Das Deutsche Institut für Wirtschaftsforschung berichtet (DIW, 2003), dass der Primärenergieverbrauch (PEV) in Deutschland im Jahr 2002 um 1,9 % gesunken ist. Als Ursachen wurden die schwache Konjunktur sowie die mildere Witterung gegenüber dem Jahr 2001 angegeben. Auch mit einer Temperaturbereinigung wäre der PEV um 0,6 % niedriger ausgefallen.

Die Anteile der Energieträger am PEV im Jahr 2002 sind in der Tabelle 1 aufgeführt. Der Anteil des Erdgases auf dem zweiten Platz der Rangfolge hat sich weiter erhöht. Wie das DIW berichtet, ist der Erdgasverbrauch gegenüber dem Vorjahr um 0,4 % zurückgegangen, temperaturbereinigt allerdings um 2,5 % gestiegen. Die Bedeutung des Erdgases für Deutschland, die sich auch auf die Entwicklung der Erdgasspeicherung ausgewirkt hat, wird in Abb. 2 verdeutlicht.

Tabelle 1 Anteile der Energieträger am Primärenergieverbrauch in Deutschland

Energieträger	Anteile in %		
	2001	2002	
Mineralöl	38,2	37,5	
Erdgas	21,4	21,7	
Steinkohle	13,2	13,2	
Braunkohle	11,2	11,6	
Kernenergie	12,8	12,6	
Wasser- und Windkraft	0,8	0,9	
Sonstige	2,4	2,5	
nach DIW (2003)			

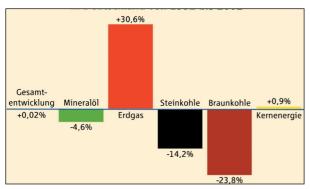


Abb. 2 Veränderung des Primärenergieverbrauchs in Deutschland 1992 bis 2002 (Quelle: RWE Dea, 2003)

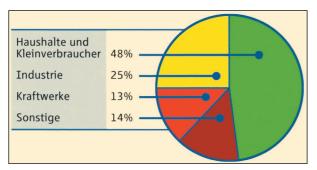


Abb. 3 Struktur des Erdgasverbrauchs in Deutschland im Jahr 2002 (nach RWE Dea, 2003)

Während der Verbrauch von Braunkohle, Steinkohle und Mineralöl deutlich zurückging, stieg er beim Erdgas in den letzten 10 Jahren um mehr als 30 % an.

Das Erdgasaufkommen für Deutschland (die Summe aus Importen und heimischer Förderung) betrug im Jahr 2002 rd. 20 Mrd. m³ (Vn) an inländischer Produktion¹¹ aus 87 Erdgaslagerstätten und rd. 91 Mrd. m³ (Vn) Importmenge²¹ aus fünf Ländern. Der tatsächliche Gasverbrauch betrug rd. 98 Mrd. m³ (Vn). Tabelle 2 und 3 zeigen die Herkunftsländer, Erdgasförderung, -importe, -aufkommen und -verbrauch in Deutschland.

Die im letzten Jahr angegebenen Zahlen für das in Zukunft erwartete Erdgasaufkommen werden auch dieses Jahr weiter fortgeschrieben. Nach der letzten Studie von PROGNOS (1999) für das Bundesministerium für Wirtschaft und Arbeit (siehe auch bei Pfingsten 2000), bleibt das Erdgas auf Wachstumskurs. Sein Anteil am PEV könnte von derzeit 21,5 % auf 24 bis 25 % im Jahr 2010 und auf

Tabelle 2 Bezugsquellen für Erdgas in Deutschland

Land	Anteil in %			
	2001	2002		
Deutschland	19	18		
Niederlande	20	19		
Norwegen	22	25		
Russland	33	31		
Dänemark/Großbritannien	6	7		
nach DIW (2003)				

Tabelle 3 Erdgasförderung, -import, -export und -verbrauch in Deutschland

Einheit	Já	ahr	Veränderung		
	2001	2002	in %		
Inländische					
Erdgasförderung, Mrd. kWh	198,2	199,0	0,4		
Einfuhr, Mrd. kWh	829,1	884,1	6,6		
Erdgasaufkommen, Mrd. kWh	1027,3	1083,1	5,4		
Ausfuhr, Mrd. kWh	84,4	119,0	40,3		
Speichersaldo, Mrd. kWh	19	-6,2	-		
Verbrauch, Mrd. kWh	961,5	957,9	-0,4		
Primärenergie-Verbrauch					
von Erdgas, Mio. t. SKE	106,6	106,2	-0,4		
Erdgasaufkommen ¹⁾ , Mrd. m ³ (Vn)	105,1	110,9	5,8		
Verbrauch ¹⁾ , Mrd. m ³ (Vn)	98,4	98,0	-0,4		

nach DIW (2003)

¹⁾ durch NLfB ergänzt. Zum Vergleich der Energieträger werden in Bilanzen die entsprechenden Energieinhalte z. B. in kWh, Petajoule oder Steinkohleneinheiten (SKE) angegeben. Für die Darstellung der Erdgasvolumina wurde ein theoretisches Gasvolumen errechnet, das einem Erdgas der Groningen-Qualität mit einem Heizwert H₀ von 9,77 kWh/m³ (Vn) entspricht. Dies ermöglicht die volumenbezogene Darstellung von Speichermengen in Relation zum Gasaufkommen und -ver-

27–28 % im Jahr 2020 ansteigen. Der Erdgasverbrauch könnte im Jahr 2010 etwa 110 Mrd. m³(Vn) und

120 Mrd. m³(Vn) im Jahr 2020 betragen. Dieser Zuwachs soll zu Lasten von Mineralöl, Steinkohle und Kernenergie gehen (PROGNOS 1999).

Die Struktur des Erdgasverbrauchs (Abb. 3) zeigt, dass im Jahr 2002 Haushalte und Kleinverbraucher zu rund 50 % am Gasverbrauch beteiligt waren und damit die Hauptverbraucher von Erdgas darstellen. Jährlich entscheiden sich zur Zeit mehr als 300.000 Haushalte zur Installation einer Erdgasheizung (RWE Dea, 2003). Bedenkt man, dass diese Gruppe anteilsmäßig steigt und in ihrem Verbrauchsverhalten sehr stark einem saisonalen und tageszeitlichen Zyklus folgt (Fallbeispiel: Eine typische Hochdruck-Kaltfront-Wetterlage im Januar dauert über Wochen an, Heizung und Warmwasserbereitung werden morgens und zum Feierabend hochgefahren), haben Gasspeicher eine im aufstrebenden Erdgasmarkt zunehmende Bedeutung.

uständigkeiten für die Zulassung von Untertage-Speichern

Im Rahmen seiner Tätigkeit wird das NLfB regelmäßig nach den Zuständigkeiten und gesetzlichen Regelwerken für Untertage-Erdgasspeicher gefragt.

Wer in Deutschland Untertage-Erdgasspeicher plant, betreibt, erweitert oder stilllegt, benötigt einen genehmigten Betriebsplan. Der hierfür geltende gesetzlich maßgebliche Ordnungsrahmen sind das Bundesberggesetz und die daran angeschlossene Verordnungen sowie Verwaltungsvorschriften der Bergbehörden. Zuständig für die Zulassung von Betriebsplänen (Rahmen-, Haupt-,

Sonderbetriebspläne, u. a.) sind die jeweils zuständigen Behörden (Bergbehörden oder vergleichbare Institutionen) der einzelnen Bundesländer. Die Bergbehörden entscheiden, ob bei der Genehmigung der Betriebspläne z. B. die Geologischen Dienste der Bundesländer im Rahmen von gutachtlichen Stellungnahmen als Fachbehörden zur Prüfung der bergbaulichen Sicherheit (Dichtheit) der Speicher hinzugezogen werden.

enndaten der Erdgasspeicherung
Die Tabellen 4 bis 6 zeigen den aktuellen Status für Betrieb, Planung und
Bau von Untertagespeichern in Deutschland.
Die für den Stichtag 31.12.2002 gültigen An-

Die für den Stichtag 31.12.2002 gültigen Angaben beruhen auf den oben beschriebenen jährlichen Meldungen der Speichergesellschaften an das Niedersächsische Landesamt für Bodenforschung.

Die geographische Lage aller deutschen Untertagespeicher zeigt Abb. 4. Ergänzend zu den Erdgasspeichern wurden auch die Kavernenspeicher für flüssige Kohlenwasserstoffe berücksichtigt. In Deutschland sind Speicher in ehemaligen Erdöl- oder Erdgaslagerstätten und Aquiferen in den ehemaligen Sedimentbecken von Nord-, Ost- und Süddeutschland verbreitet. Als Speicherhorizonte dominieren dabei poröse Sandsteine.

Die Lage der durch einen kontrollierten Solungsprozess (zylindrische Hohlräume)

¹⁾ alle Volumenangaben beziehen sich auf einen oberen Heizwert (Brennwert) H_a mit 9,77 kWh/m²(V_n). In der Förderindustrie wird dieser Referenzwert häufig als »Reingas« oder »Groningen-Brennwert« bezeichnet. Daneben ist in Statistiken auch ein Bezugswert von 11,5 kWh/m²(V_n) gebräuchlich, der sich auf die durchschnittliche Qualität von Nordseegas bezieht. Bei der Angabe von Wärmeinhalten für Erdgase wird gelegentlich auch der untere Heizwert H_n als Bezugsgröße verwendet.

²⁾ Zahlen nach DIW, Wochenbericht 6/03, www.diw.de (Rubriken: Publikationen, Wochenberichte).

Tabelle 4 Erdgas-Porenspeicher

Ort	Gesellschaft	Speichertyp	Teufe m	Speicher- formation	Gesamt- volumen ¹⁾ Mio.r	Arbeits- gas (max.) m ³ (V _n)	Entnahme- rate (max. 1.000 m ³ /l
In Betrieb							
Allmenhausen	CONTIGAS Deutsche Energie-AG	Gaslagerstätte	350	Buntsandstein	369	60	60
Bad Lauchstädt	Verbundnetz Gas AG	Gaslagerstätte	rd. 800	Rotliegend	657	426	238
Berlin	Berliner Gaswerke AG (GASAG)	Aquifer	750–1.000	Buntsandstein	1.085	780	450
Bierwang	Ruhrgas AG	Gaslagerstätte	1.560	Tertiär (Chatt)	2.457	1.300	1.200
Breitbrunn/ Eggstätt	RWE Dea AG, Mobil Erdgas- Erdöl GmbH, Ruhrgas AG	Gaslagerstätte	ca. 1.900	Tertiär (Chatt)	2.075	1.080	520
Buchholz	Verbundnetz Gas AG	Aquifer	570-610	Buntsandstein	223	160	146
Dötlingen	BEB Erdgas und Erdöl GmbH	Gaslagerstätte	2.650	Buntsandstein	4.383	2.025	840
Eschenfelden	Ruhrgas AG, Energie- und Wasserversorgungs AG	Aquifer	600	Keuper, Muschelkalk	168	72	130
Frankenthal	Saar-Ferngas AG	Aquifer	600	Jungtertiär II (A-Sand)	170	63	100
Fronhofen	Preussag Energie GmbH für Gasversorgung Süddeutschland	Öllagerstätte	1.750–1.800	Muschelkalk (Trigonodus-Dolomit)	120	70	70
Hähnlein	Ruhrgas AG	Aquifer	500	Tertiär (Pliozän)	160	80	100
Inzenham-West	RWE Dea AG für Ruhrgas AG	Gaslagerstätte	680–880	Tertiär (Aquitan)	880	500	300
Kalle	RWE Gas AG	Aquifer	2.100	Buntsandstein	630	315	450
Kirchheilingen	Verbundnetz Gas AG	Gaslagerstätte	rd. 900	Zechstein	250	200	187
Lehrte / Hannover	Preussag Energie GmbH für Avacon	Öllagerstätte	1.000-1.150	Dogger (Cornbrash)	120	74	130
Rehden	WINGAS GmbH	Gaslagerstätte	1.900-2.250	Zechstein	7.000	4.200	2.400
Reitbrook	Preussag Energie GmbH u. Mobil Erdgas-Erdöl GmbH für Hamburger Gaswerke	Öllagerstätte mit Gaskappe	640–725	Oberkreide	500	350	350
Sandhausen	Ruhrgas AG/Gasversorgung Süddeutschland	Aquifer	600	Tertiär	60	30	45
Schmidhausen	Preussag, Mobil und BEB für Stadtwerke München	Gaslagerstätte	1.000	Tertiär (Aquitan)	300	150	150
Stockstadt Stockstadt	Ruhrgas AG Ruhrgas AG	Gaslagerstätte Aquifer	500 450	Tertiär (Pliozän) Tertiär (Pliozän)	94 180	45 90 }	135
Uelsen	BEB Erdgas und Erdöl GmbH	Gaslagerstätte	rd. 1.500	Buntsandstein	1.220	660	310
Wolfersberg	RWE Dea AG für Bayerngas	Gaslagerstätte	2.930	Tertiär (LithothamKalk)	538	320	210
Summe (in Betriet))				23.639	13.050	8.526
In Planung oder	[,] Bau						
Frankenthal	Saar-Ferngas AG	Aquifer	600	Jungtertiär I (C-Sand)	100	k. A.	
Wolfersberg	RWE Dea AG	Gaslagerstätte	2.930	Tertiär (LithothamKalk)	130	130	
Summe (Planung/l	Bau)				230	130	
1) Cocombioliumon	n = Summe aus maximal (zugelassener	m)					

Tabelle 5 Erdgas-Kavernespeicher

Ort	Gesellschaft	Anzahl der Einzelspeicher	Teufe m	Speicher- formation	Speicher- volumen ¹⁾	Arbeits- gas (max.	
					Mio.r	m³ (V _n)	1000 m³/h
In Betrieb							
Bad Lauchstädt	Verbundnetz Gas AG	18	780–950	Zechstein 2	870	585	929
Bernburg	Verbundnetz Gas AG	27	500-700	Zechstein 2	948	725	1.458
Bremen-Lesum	Mobil Erdgas-Erdöl GmbH	2	1.250-1.750	Zechstein	260	210	240
Bremen-Lesum	swb Norvia GmbH & Co KG	2	1.050-1.350	Zechstein	97	78	160
Burggraf-Bernsdorf	Verbundnetz Gas AG	stillg. Bergwerk	rd. 580	Zechstein 2	5,1	3,4	40
Empelde	GHG-Gasspeicher Hannover GmbH	3	1.300-1.800	Zechstein 2	183	146	300
Epe	Ruhrgas AG	32	1.090-1.420	Zechstein 1	2.200	1.567	2.125
Epe	Thyssengas GmbH	5	1.100-1.420	Zechstein 1	235	184	520
Etzel	IVG Logistik GmbH	9	900-1.100	Zechstein 2	890	534	1.310
Harsefeld	BEB Erdgas und Erdöl GmbH	2	1.150-1.450	Zechstein	186	140	300
Huntorf	EWE Aktiengesellschaft	4	650-850	Zechstein	110	60	350
Kiel-Rönne	Stadtwerke Kiel AG	2	1.250-1.600	Rotliegend	100	60	100
Kraak	Hamburger Gaswerke GmbH	1	900-1100	Zechstein	56	50	250
Krummhörn	Ruhrgas AG	3	1.500-1.800	Zechstein 2	73	51	100
Neuenhuntorf	EWE AG für E.ON Kraftwerke GmbH	1	750-1.000	Zechstein	32	20	100
Nüttermoor	EWE Aktiengesellschaft	16	950-1.300	Zechstein	1.100	850	1.000
Peckensen	EEG - Erdgas Erdöl GmbH	1	1.300-1.450	Zechstein	105	60	125
Reckrod	Gas-Union GmbH	2	800-1.100	Zechstein 1	130	82	100
Staßfurt	RWE Gas AG	3	400–1.130	Zechstein	220	183	220
Xanten	Thyssengas GmbH	8	1.000	Zechstein	221	192	280
Summe (in Betrieb)	my oonigao ambii	142	1.000	20011310111	8.021	5.780	10.007
In Planung und Bau							
Bernburg	Verbundnetz Gas AG	10	500-700	Zechstein 2	546	416	
Empelde	GHG-Gasspeicher Hannover GmbH	1	1.300-1.800	Zechstein 2	145	113	
Epe	Thyssengas GmbH	4	1.300	Zechstein 1	300	240	
Huntorf	EWE Aktiengesellschaft	2	1.000-1.400	Zechstein	270	215	
Jemgum/Holtgaste	Wintershall AG	10	1.000-1.300	Zechstein	1.000	700	
Kraak	Hamburger Gaswerke GmbH	3	900-1.100	Zechstein	200	160	
Nüttermoor	EWE Aktiengesellschaft	2	950-1.300	Zechstein	210	140	
Peckensen	EEG - Erdgas Erdöl GmbH	9	1.100-1.400	Zechstein	1.000	740	
Reckrod-Wölf	Wintershall AG	2	700-900	Zechstein 1	150	120	
Rüdersdorf	EWE Aktiengesellschaft	4	ca. 900-1.200	Zechstein	400	300	
Staßfurt	RWE Gas AG	3	850-1.150	Zechstein	600	500	
Xanten	Thyssengas GmbH	5	1.000	Zechstein	150	125	
Summe (Planung/Bau)		50			4.971	3.769	
0 -							
	me aus maximalem (zugelassenem)				04104-10	0000	Ovelle Between "
Arbeitsgas- und Kissen	yasvolumen;				Stand 31.12.	2002	Quelle: Betreiberfin

Tabelle 6 Kavernenspeicher für Rohöl, Mineralölprodukte und Flüssiggas

Ort	Gesellschaft	Speichertyp	Teufe, m	Anz.der Einzelspeicher	Füllung
Bernburg-Gnetsch	esco-european salt company GmbH&Co.KG	Salzlager-Kavernen	510-680	2	Propan
Blexen	Untertage-Speicher-Gesellschaft mbH (USG)	Salzstock-Kavernen	640-1.430	4/1/3	Rohöl / Gasöl / Benzin
Bremen-Lesum	Nord-West Kavernen GmbH (NWKG) für Erdölbevorratungsverband (EBV)	Salzstock-Kavernen	600–900	5	Leichtes Heizöl
Epe	Deutsche BP AG	Salz-Kavernen	1.000-1.400	5	Rohöl, Mineralölprodukte
Etzel	IVG Logistik GmbH	Salzstock-Kavernen	800-1.600	30/1 * *	Rohöl, Mineralölprodukte
Heide	Nord-West Kavernen GmbH (NWKG) für Erdölbevorratungsverband (EBV)	Salzstock-Kavernen	600–1.000	9	Rohöl, Mineralölprodukte
Heide 101	RWE Dea AG	Salzstock-Kaverne	660-760	1	Butan
Hülsen	Wintershall AG	stillgelegtes Bergwerk	550-600	(1)	Rohöl, Mineralölprodukte
Ohrensen	Dow Deutschland GmbH & Co.KG	Salzstock-Kavernen	800-1.100	1/1/1	Ethylen / Propylen / EDC
Sottorf	Nord-West Kavernen GmbH (NWKG) für Erdölbevorratungsverband (EBV)	Salzstock-Kavernen	600–1.200	9	Rohöl, Mineralölprodukte
Teutschenthal	DOW Central Germany	Salzlager-Kavernen	700–800	2/1*	Ethylen/Propylen
Wilhelmshaven-Rüstringen	Nord-West Kavernen GmbH (NWKG) für Erdölbevorratungsverband (EBV)	Salzstock-Kavernen	1.200-2.000	35	Rohöl, Mineralölprodukte
Summe Einzelspeicher * in Bau; ** in Planung				112 Stand 31.12.2002	Quelle: Betreiberfirmen

bergmännisch hergestellten Kavernenspeicher ist durch die Verbreitung mächtiger Salinare des Zechsteins (Salzstöcke) auf Norddeutschland beschränkt. In Tabelle 7 sind die Kenndaten der deutschen Erdgasspeicherung zusammengefasst.

Im Jahr 2002 waren für Erdgas 23 Porenspeicher und 20 Kavernenspeicher, letztere mit insgesamt 142 Einzelkavernen, in Betrieb. Das Arbeitsgasvolumen hat sich um 0,3 Mrd. $m^3(V_n)$ geringfügig auf 18,8Mrd. m³(V_n) reduziert. Etwa zwei Drittel des Arbeitsgases sind in Porenspeichern- und ein Drittel in Kavernenspeichern verfügbar. Die Kavernenspeicher ermöglichen allerdings eine deutlich höhere Entnahmerate als Porenspeicher. Anders als in Porenspeichern haben Kavernenspeicher keine Fließrestriktionen durch den natürlichen Porenraum der genutzten Speichergesteine. Die Entwicklung des Arbeitsgasvolumens seit Beginn der Speichernutzung im Jahr 1955 zeigt Abb. 5. Nach dem steilen Anstieg der letzten 10 Jahre, bei dem sich das Arbeitsgasvolumen etwa verdoppelt hat und an dem u.a. maßgeblich der Ausbau der ehemaligen Erdgaslagerstätte Rehden zu einem der größten Gasspeicher in Europa sowie die Realisierung einiger anderer Poren- und Kavernenspeicherprojekte beteiligt waren, hat sich das Arbeitsgasvolumen auf einem Niveau von ca. 19 Mrd. m³(V_n) stabilisiert.

Bei der Gruppe der Porenspeicher gab es keine größeren Aktivitäten und nur eine unbedeutende Erhöhung des Arbeitsgasvolumens gegenüber dem Vorjahr um rd. 0,1 Mrd. m³(V_n). Dies ist durch einen Anstieg beim Arbeitsgasvolumen in den Speichern Allmenhausen und Berlin begründet. Durch die Realisierung der Speichererweiterung in Allmenhausen, Stornierung des Projektes Albaching-Rechtmehring und Neuaufnahme einer geplanten Speichererweiterung in Wolfersberg beträgt das zusätzliche Arbeitsgasvolumen »in Planung oder Bau« derzeit nur 0,13 Mrd. m³(V_n). In der Liste der Speicher nicht enthalten ist eine laufende Eignungsuntersuchung für das derzeit produzierende Erdölfeld Eich im Oberrheintal.

Bei den Kavernenspeichern in Betrieb ist eine geringe Reduzierung des summarischen Arbeitsgasvolumens um 0,3 Mrd. m³(V_n) zu verzeichnen. Bei einzelnen Speichern erfolgten Veränderungen in der Höhe des Arbeitsgasvolumens sowohl nach oben als auch nach unten. Neu in der Rubrik »in Betrieb« ist der Speicher Peckensen, wo die erste der insgesamt 10 geplanten Kavernen in Betrieb ist. Einige der Speicher sollen durch den Bau zusätzlicher Kavernen erweitert werden. Das gemeldete zusätzliche Arbeitsgasvolumen durch Planung oder Bau weiterer 50 Kavernen blieb gegenüber dem Vorjahr bei 3,8 Mrd. m³(V_n). Neu in der Statistik ist die geplante Erweiterung des Speichers Empelde um eine Kaverne, wobei das Solewasser in ein ca. 30 km entferntes aufgegebenes Salzbergwerk eingeleitet werden soll. Im Kavernenspeicher Epe wurde im

Abb. 4 Speicherlokationen in Deutschland

Tabelle 7 Kenndaten der deutschen Erdgasspeicherung im Jahr 2002

	Porenspeicher	Kavernenspeicher	Summe
Arbeitsgasvolumen »in Betrieb«, Mrd. m³(Vn)	13,0	5,8	18,8
Maximale Entnahmerate/Tag, Mio. m ³ (V _n)	204,6	240,2	444,8
Theoretische Verfügbarkeit des Arbeitsgases, Tage*	64	24	42
Anzahl der Speicher »in Betrieb«	23	20	43
Arbeitsgasvolumen »in Planung oder Bau«, Mrd. m³(V	' _n) 0,1	3,8	3,9
Anzahl der Speicher (Planung oder Bau)**	2	12	14
Summe Arbeitsgas (Ist und Plan/Bau), Mrd. m ³ (V _n)	13,1	9,6	22,7

Stand: 31.12.2002,

^{*} rechnerischer Wert. In der Praxis fällt die Entnahmerate nach gewisser Zeit druckabhängig.

^{**} einschließlich Speichererweiterungen bestehender Betriebe.

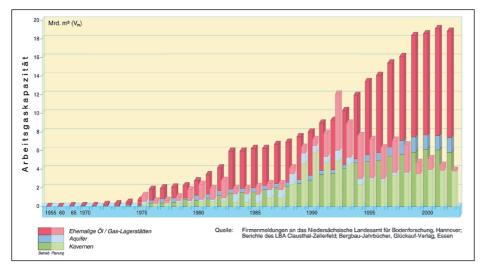


Abb. 5 Entwicklung des Arbeitsgasvolumens in Deutschland seit 1955

Jahr 2002 mit der Umrüstung zweier weiterer Kavernen für den Gasspeicherbetrieb begonnen. Die Fertigstellung ist für Ende 2004 geplant (Betreiber: Thyssengas AG).

Nach Realisierung aller Porenspeicher- und Kavernenprojekte soll in den nächsten Jahren ein Anstieg des maximalen Arbeitsgasvolumens auf 22,7 Mrd. m³(V_n). (Vorjahreszahl: 23,5 Mrd. m³(V_n)) erfolgen.

älfte des Arbeitsgasvolumens befindet sich in vier Erdgasspeichern

Die Abbildung 6 zeigt die in den Tabellen einzeln aufgelisteten maximalen Arbeitsgasinhalte aller 42 derzeit in Betrieb befindlichen Speicher in absteigender Reihung. Wie in den Vorjahren befindet sich weiterhin etwa die Hälfte des Arbeitsgases von rd. 19 Mrd. m³(V_n) in den vier Speichern Rehden, Dötlingen, Epe und Bierwang, gefolgt von den anderen kleineren Speichern, deren Arbeitsgasmengen überwiegend unter 500 Mio. m³(V_n) liegen und zum Teil bis deutlich unter 100 Mio. m³(V_n) Arbeitsgasvolumen reichen.

Die Abbildung 7 verdeutlicht, dass wiederum die Hälfte der maximal möglichen Entnahmerate von etwa 445 Mio. $m^3(V_n)$ durch nur 6 Speicher bereitgestellt wird. An erster Stelle steht weiterhin der Porenspeicher Rehden, gefolgt vom Kavernenspeicher Epe der Ruhrgas AG.

Wie weit das gemeldete (genehmigte) maximale oder technisch anfahrbare Speichervolumen ausgenutzt wurde, hängt wesentlich von der Außentemperatur ab. Eine historische Entwicklung des maximal verfügbaren in Relation zu dem tatsächlich genutzten Speicherinhalt (Summe von Arbeitsgas und Kissengasvolumen) ist in Abb. 8 enthalten. Die obere Kurve zeigt den maximalen Speicherinhalt, die untere Kurve den Kissengasinhalt. Zwischen diesen beiden liegen die von den Betreiberfirmen gemeldeten maximalen und minimalen Speicherinhalte (Füllstände) zu den Stichtagen 31. 3. und 30. 9. des jeweiligen Jahres. Es zeigt sich, dass weder das maximal mögliche Speichervolumen überschritten noch das Kissengas als Arbeitsgas hinzugezogen werden musste. Im kalten Winter 1995/1996 wurde das Speichervolumen allerdings bis auf das Kissengasniveau heruntergefahren.

eutsche Erdgasspeicherung im weltweiten Vergleich

Die hier dargestellten Daten für die Bundesrepublik Deutschland werden auch für die Darstellung der Gesamtsituation in

Europa sowie für die Welt verwendet. Daten zum Arbeitsgasvolumen von EU-Beitrittskandidaten oder von Erdgas-Transit-Staaten spielen bei verschiedenen Fragestellungen zur nationalen Erdgasversorgung eine Rolle. Neben verschiedenen »Informationsbrokern« ist die wichtigste Organisation, die u. a. Daten zu Untertage-Erdgasspeichern vorhält, die Internationale Gas Union. Sie ist ein Zusammenschluss von Unternehmen aus ca. 70 Nationen, wobei für jede Nation eine Institution als Ansprechpartner fungiert. Für Deutschland erfolgt die Koordination der Arbeiten durch den DVGW in Bonn. Ausführliche Informationen über die IGU und ihre Working Commitees, wobei das WOC 2 sich mit Gasspeicherung beschäftigt, ist unter www.igu.org zu finden.

Die Darstellung einer aktuellen Studie der IGU, die anlässlich der Weltgaskonferenz im Juni in Tokio veröffentlicht wurde, ist in dieser Ausgabe veröffentlicht (J. Wallbrecht: »Weltgaskonferenz 2003 in Tokyo: Ausgewählte Themen zur Untertage-Erdgasspeicherung«, S. 386). Das NLfB war bei der IGU-Studie an der Visualisierung der Speicherkenndaten über GIS (ArcView) beteiligt. Ein Zugang zu den weltweiten Speicherdaten ist über einen bisher passwortgeschützten Bereich unter www.dvgw.de möglich. Momentan sind danach weltweit über 630 Speicher in Betrieb. Etwa ein Viertel da-

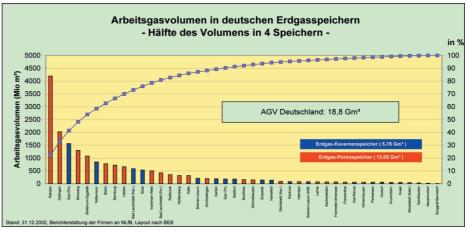


Abb. 6 Verteilung des Arbeitsgasvolumens in deutschen Erdgasspeichern

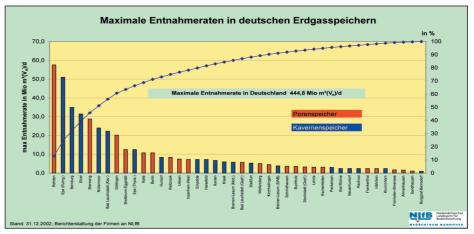


Abb. 7 Verteilung der maximalen Entnahmeraten in deutschen Erdgasspeichern

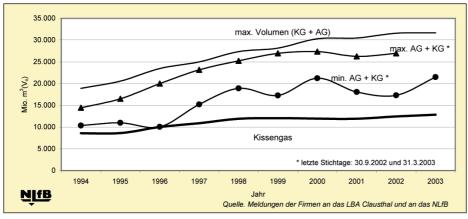


Abb. 8 Ausnutzungsgrad der Gasspeicher in Deutschland (Speicherinhalte an Stichtagen)

von befindet sich in Europa. Hervorzuheben als Speichernation Nummer 1 sind die USA mit rund zwei Dritteln der weltweiten Speicherprojekte, gefolgt von Russland und der Ukraine, die beide in der Summe über wesentlich weniger Speicher, aber über etwa gleich viel Arbeitsgas verfügen wie die USA. Deutschland steht auf Platz 4 der Weltrangliste. Die weltweit größte Verbreitung hinsichtlich Anzahl und Arbeitsgasvolumen haben die Porenspeicher. Dabei bilden in dieser Kategorie die ehemaligen Erdöl- und Erdgasfelder zahlenmäßig mit rd. 75 % und die Aquiferspeicher mit rd. 15 %, also mit insgesamt 90 %-Anteil, die größte Grupne.

peicherpotenzial für Erdgas in Deutschland aus geologischer Sicht, Ausblick

Aus geologischer Sicht sind für die Einrichtung neuer Erdgasspeicher in weiten Teilen Deutschlands günstige Bedingungen vorhanden. Im Norden existiert in den Erdgaslagerstätten und Salzstöcken sowie in Aquiferen Speicherpotenzial in ausreichender Höhe. Auch in den anderen Fördergebieten könnten existierende Erdöl- und Erdgaslagerstätten, nach entsprechenden Eignungsuntersuchungen, in begrenztem Umfang zusätzliches Speicherpotenzial bieten. Die künftige Entwicklung des verfügbaren Arbeitsgasvolumens in Deutschland hängt daher nicht von geologischen Faktoren ab. Wie sich das verfügbare Arbeitsgasvolumen und die Anzahl der Speicherbetriebe entwickeln, wird künftig auch weiterhin vom Anstieg des Erdgasverbrauches (Speichereinsatz zur Deckung von saisonalen und tageszeitlichen Bedarfsspitzen), von spekulativen Gesichtspunkten (schwankende saisonale Gaspreise) und von Fragen der Bezugsoptimierung geprägt sein. Als neuer Aspekt sind hier die Überlegungen der EU-Kommission zur Frage der Versorgungssicherheit in einem europäischen Erdgas-Binnenmarkt zu erwähnen. Eine entsprechende Richtlinie des Europäischen Parlaments und des Rates, die sich mit den entsprechenden Maßnahmen im Falle einer außergewöhnlichen Versorgungslage beschäftigt, ist in Bearbeitung. Durch das

derzeit hohe Speicherpotenzial, die Verteilung des Erdgasbezuges auf mehrere Länder sowie günstige Bedingungen für die Schaffung neuer Speicher ist unter dem Aspekt einer Krisenvorsorge in Deutschland eine hohe Versorgungssicherheit für Erdgas gegeben. Aufsetzend auf die hoch entwickelte Speichertechnologie – Deutschland ist hier im internationalen Maßstab in einer Spitzenposition - sind künftig andere Arten der Speicherung denkbar. Verschiedene Gremien und international tätige Organisationen sowie Unternehmen beschäftigen sich derzeit mit den theoretischen Ansätzen einer Speicherung von Kohlendioxid im tieferen Untergrund, um hierdurch den Ausstoß an Treibhausgasen zu reduzieren (DGMK, 2003). Auch die Möglichkeiten einer Speicherung von Helium in Kavernen war gelegentlich ein Thema. In die weite Zukunft blickend sind Szenarien denkbar, dass große Mengen an Wasserstoff, die aus Erdgas, Wind- oder Solarstrom generiert werden, in Salzkavernen zwischengespeichert und für Brennstoffzellen eingesetzt werden. Im Bereich der Deutschen Nordsee existieren mächtige Salzstöcke, die für eine Solung von Kavernen und Speicherung von Wasserstoff aus Wind- oder Wellenenergiestrom genutzt werden könnten. Ob dieses oder weitere exotische Szenarien eines Tages Realität werden könnten, hängt neben der Existenz eines entsprechenden Marktes, der technischen Machbarkeit sowie von wirtschaftlichen Kriterien derartiger Speicherprojekte ab. Alle Speicherprojekte werden auf dem bereits heute hoch entwickelten technischen Stand der deutschen Bohr, Förder- und Gasversorgungs-Industrie sowie den mit dieser Industrie zusammen arbeitenden Servicefirmen und Ingenieurbüros aufbauen können.

peicheranlagen für Rohöl, Mineralölprodukte und Flüssiggas

Als ergänzende Information zu den Untertage-Erdgasspeichern sind in Abb. 4 die Lokationen und in Tab. 6 die Kenndaten der im Jahr 2002 in Betrieb befindlichen 12 Speicheranlagen für Rohöl, Mineralölprodukte und Flüssiggas mit insgesamt 112 Ka-

vernen und einem stillgelegten Bergwerk dargestellt. Diese Speicher dienen der Krisenbevorratung für Motorbenzine, Mitteldestillate, Schweröle und Rohöl nach dem Erdölbevorratungs-Gesetz (Vorratspflicht für 90 Tage) sowie zum Ausgleich von Produktionsschwankungen für verarbeitende Betriebe. Nach dem Bericht des Erdölbevorratungsverbandes (EBV 2002), der als Körperschaft des öffentlichen Rechts die nationale Institution zur Krisenbevorratung darstellt, betrug die existierende Vorratsmenge 24,4 Mio. t Rohöl und Mineralölprodukte (Stichtag vom 31. 3. 2002, gesetzliche Vorratspflichtmenge: 23,5 Mio. t).

Wie in den Vorjahren wird dieser Artikel nach seinem Erscheinen über die Website des NLfB unter www.nlfb.de in den Pfaden »Rohstoffe« und »Downloads« in pdf-Format verfügbar sein. Informationen über den Bereich Kohlenwasserstoffgeologie, den Erdölgeologischen Austauschkreis und den Verbund-Kohlenwasserstoffgeologie sind in den Pfaden »Anwendungsgebiete« und »Kohlenwasserstoffgeologie« oder »Untertage-Erdgasspeicher« zu finden.

Weitere Informationen über Erdöl- und Erdgasnutzung in Deutschland sind außerdem auf den Websites des Literaturverzeichnisses zu finden.

Literatur und Links

American Gas Association (1997): Survey of Underground Storage of Natural Gas in the United States and Canada 1996. – Arlington.

Cornot-Gandolphe, S. (1995): Underground Gas Storage in the World. – Cedigaz, Rueil-Malmaison.

Deutsches Institut für Wirtschaftsforschung (DIW) (2003): Wochenbericht 6/03, Schwache Konjunktur und milde Witterung drücken Primärenergieverbrauch (PEV in Deutschland im Jahre 2002) – Arbeitsgemeinschaft Energiebilanzen, Berlin. Download unter www.diw.de (Publikationen, Wochenberichte, WB 6/03).

DGMK (2003): CO₂-Reinjektion in den Untergrund-Von der Forschung in die Praxis, Kolloquium am 23.09.2003 bei der BGR in Hannover. www.dgmk.de. Economic Commission for Europe (1999): Underground Storage in Europe and Central Asia, Survey 1996–1999. – United Nations, Geneva.

Erdölbevorratungsverband (EBV) (2002): Geschäftsbericht 2001/2002 Hamburg. www.ebv-oil.de.

Internationale Gas Union (IGU) (2003): Basic Activity Study, Working Committee 2, Veröffentlichung anlässlich der 22. World Gas Conference in Tokio (1.–5. 6. 2003). www.igu.org.

PROGNOS (1999): Die längerfristige Entwicklung der Energiemärkte im Zeichen von Wettbewerb und Umwelt. – Studie im Auftrag des BMWi, Basel.

Pfingsten, M. (2000): Die Rolle des Erdgases im liberalisierten Energiemarkt. – Vortrag anlässlich des Forums E-world of Energy, 8.–9. 2. 2000, Essen.

RWE Dea (2003): Unternehmensbroschüre Erdgasspeicher der RWE Dea AG, Hamburg.

Wirtschaftverband Erdöl- und Erdgasgewinnung e.V. (W.E.G.) (2003): Jahresbericht 2002, Hannover. www.erdoel-erdgas.de.